Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-09T03:53:37.066Z Has data issue: false hasContentIssue false

Particle dynamics and dune formation in Rayleigh–Bénard convection: a particle-resolved simulation study

Published online by Cambridge University Press:  07 August 2025

Xianyang Chen*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China
Rodolfo Ostilla-Mónico
Affiliation:
Departamento de Ingeniería Mecánica y Diseño Industrial, Escuela Superior de Ingeniería, Universidad de Cádiz, Puerto Real 11519, Spain
Daniel Floryan*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA
Myoungkyu Lee
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA
Andrea Prosperetti
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Houston, Houston, TX 77204, USA Faculty of Science and Technology, University of Twente, Enschede 7500 AE, The Netherlands Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
Corresponding authors: Xianyang Chen, tomchen95@tongji.edu.cn; Daniel Floryan, dfloryan@uh.edu
Corresponding authors: Xianyang Chen, tomchen95@tongji.edu.cn; Daniel Floryan, dfloryan@uh.edu

Abstract

This paper presents numerical results for Rayleigh–Bénard convection with suspended particles at Rayleigh numbers $Ra=10^7$ and $10^8$, and unit Prandtl number. Accounting for their finite size makes it possible to investigate in detail the mechanism by which the particles, which are 10 % heavier than the fluid, get resuspended after settling, thus maintaining a two-phase circulating flow. It is shown that an essential component of this mechanism is the formation of particle accumulations, or ‘dunes’, on the bottom of the Rayleigh–Bénard cell. Ascending plumes become localised on these dunes. Particles are dragged up the dune slopes, and when they reach the top, are entrained into the rising plumes. Direct resuspension of particles from the cell bottom, if it happens at all, is very rare. For $Ra=10^7$, aspect ratios (width/height) $\Gamma =1,2,4$ are considered. It is found that in these and in the other cases simulated, at steady state, a single dune evolves, the largest linear dimension of which is comparable to the cell size. A remarkable consequence is that even at the low volume fraction considered here, 3.27 %, the particles are able to structure the flow and to determine the size and position of the largest ascending plumes. Their effect on the Nusselt number, however, remains small. This and other results are explained on the basis of the ratio of the cell-bottom viscous boundary-layer thickness to the particle diameter.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.10.1103/RevModPhys.81.503CrossRefGoogle Scholar
Auta, H.S., Emenike, C.U. & Fauziah, S.H. 2017 Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions. Environ. Intl 102, 165176.10.1016/j.envint.2017.02.013CrossRefGoogle ScholarPubMed
Balachandar, S., Zaleski, S., Soldati, A., Ahmadi, G. & Bourouiba, L. 2020 Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Intl J. Multiphase Flow 132, 103439.10.1016/j.ijmultiphaseflow.2020.103439CrossRefGoogle Scholar
Bergman, T.L., Lavine, A.S., Incropera, F.P. & DeWitt, D.P. 2018 Fundamentals of Heat and Mass Transfer, 8th edn. Wiley.Google Scholar
Best, J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. Earth 110 (F4), F04S02.Google Scholar
Chen, X., Ostilla Monico, R., Floryan, D. & Prosperetti, A. 2024 Particle re-suspension in two-phase dispersed Rayleigh–Bénard convection. arXiv:2410.02886.Google Scholar
Chen, X. & Prosperetti, A. 2024 Particle-resolved multiphase Rayleigh–Bénard convection. Phys. Rev. Fluids 9 (5), 054301.10.1103/PhysRevFluids.9.054301CrossRefGoogle Scholar
Clift, R., Grace, J. & Weber, M. 1978 Bubbles, Drops, and Particles. Academic Press.Google Scholar
Cózar, A. et al. 2017 The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci. Adv. 3 (4), e1600582.10.1126/sciadv.1600582CrossRefGoogle ScholarPubMed
Demou, A.D., Ardekani, M.N., Mirbod, P. & Brandt, L. 2022 Turbulent Rayleigh–Bénard convection in non-colloidal suspensions. J. Fluid Mech. 945, A6.10.1017/jfm.2022.534CrossRefGoogle Scholar
Elkins-Tanton, L.T. 2012 Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113139.10.1146/annurev-earth-042711-105503CrossRefGoogle Scholar
Engelund, F. & Fredsøe, J. 1982 Sediment ripples and dunes. Annu. Rev. Fluid Mech. 14 (1), 1337.10.1146/annurev.fl.14.010182.000305CrossRefGoogle Scholar
Fry, B., Lacaze, L., Bonometti, T., Elyakime, P. & Charru, F. 2024 From discrete to continuum description of weakly inertial bedload transport. Phys. Rev. Fluids 9 (2), 024304.10.1103/PhysRevFluids.9.024304CrossRefGoogle Scholar
Gereltbyamba, B. & Lee, C. 2018 Behavior of settling inertial particles in a differentially heated cubic cavity at moderate Rayleigh number. J. Mech. Sci. Technol. 32, 31693182.10.1007/s12206-018-0620-zCrossRefGoogle Scholar
Gu, J.C., Takeuchi, S. & Kajishima, T. 2018 Influence of Rayleigh number and solid volume fraction in particle-dispersed natural convection. Intl J. Heat Mass Transfer 120, 250258.10.1016/j.ijheatmasstransfer.2017.12.020CrossRefGoogle Scholar
Jarvis, R.A. & Woods, A.W. 1994 The nucleation, growth and settling of crystals from a turbulently convecting fluid. J. Fluid Mech. 273, 83107.10.1017/S0022112094001850CrossRefGoogle Scholar
Kidanemariam, A.G. & Uhlmann, M. 2014 Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow. Intl J. Multiphase Flow 67, 174188.10.1016/j.ijmultiphaseflow.2014.08.008CrossRefGoogle Scholar
Kok, J.F., Parteli, E.J., Michaels, T.I. & Karam, D.B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75 (10), 106901.10.1088/0034-4885/75/10/106901CrossRefGoogle ScholarPubMed
Krug, D., Lohse, D. & Stevens, R.J. 2020 Coherence of temperature and velocity superstructures in turbulent Rayleigh–Bénard flow. J. Fluid Mech. 887, A2.10.1017/jfm.2019.1054CrossRefGoogle Scholar
Lavorel, G. & Le Bars, M. 2009 Sedimentation of particles in a vigorously convecting fluid. Phys. Rev. E. 80, 046324.10.1103/PhysRevE.80.046324CrossRefGoogle Scholar
Lee, M. 2024 Spectral analysis of the correlation between temperature and wall-normal velocity in Rayleigh–Bénard convection at moderate Rayleigh numbers. J. Phys.: Conf. Ser. 2753, 012006.Google Scholar
Lohse, D. & Shishkina, O. 2024 Ultimate Rayleigh–Bénard turbulence. Rev. Mod. Phys. 96, 035001.10.1103/RevModPhys.96.035001CrossRefGoogle Scholar
Marsh, B.D. & Maxey, M.R. 1985 On the distribution and separation of crystals in convecting magma. J. Volcanol. Geotherm. Res. 24 (1–2), 95150.10.1016/0377-0273(85)90030-7CrossRefGoogle Scholar
Martin, D. & Nokes, R. 1989 A fluid-dynamical study of crystal settling in convecting magmas. J. Petrol. 30, 14711500.10.1093/petrology/30.6.1471CrossRefGoogle Scholar
Oresta, P., Fornarelli, F. & Prosperetti, A. 2014 Multiphase Rayleigh–Bénard convection. Mech. Eng. Rev. 1, FE0003.10.1299/mer.2014fe0003CrossRefGoogle Scholar
Oresta, P. & Prosperetti, A. 2013 Effects of particle settling on Rayleigh–Bénard convection. Phys. Rev. E. 87, 063014.CrossRefGoogle ScholarPubMed
Park, H.J., O’Keefe, K. & Richter, D.H. 2018 Rayleigh–Bénard turbulence modified by two-way coupled inertial, nonisothermal particles. Phys. Rev. Fluids 3, 034307.10.1103/PhysRevFluids.3.034307CrossRefGoogle Scholar
Patočka, V., Calzavarini, E. & Tosi, N. 2020 Settling of inertial particles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 5, 114304.10.1103/PhysRevFluids.5.114304CrossRefGoogle Scholar
du Puits, R., Resagk, C., Tilgner, A., Busse, F. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.10.1017/S0022112006003569CrossRefGoogle Scholar
Puragliesi, R., Dehbi, A., Leriche, E., Soldati, A. & Deville, M.O. 2011 DNS of buoyancy-driven flows and Lagrangian particle tracking in a square cavity at high Rayleigh numbers. Intl J. Heat Fluid Flow 32, 915931.10.1016/j.ijheatfluidflow.2011.06.007CrossRefGoogle Scholar
Pye, K. & Tsoar, H. 2009 Aeolian Sand and Sand Dunes. Springer.10.1007/978-3-540-85910-9CrossRefGoogle Scholar
Ranz, W.E. & Marshall, W.R. 1952 Evaporation from drops. Chem. Engng Prog. 48, 141146.Google Scholar
Rayegan, S., Shu, C., Berquist, J., Jeon, J., Zhou, L., Wang, L.Z., Mbareche, H., Tardif, P. & Ge, H. 2023 A review on indoor airborne transmission of COVID-19 – modelling and mitigation approaches. J. Build. Engng 64, 105599.10.1016/j.jobe.2022.105599CrossRefGoogle ScholarPubMed
Shishkina, O. 2021 Rayleigh–Bénard convection: the container shape matters. Phys. Rev. Fluids 6 (9), 090502.10.1103/PhysRevFluids.6.090502CrossRefGoogle Scholar
Shishkina, O. & Thess, A. 2009 Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 633, 449460.10.1017/S0022112009990528CrossRefGoogle Scholar
Sierakowski, A.J. & Prosperetti, A. 2016 Resolved-particle simulation by the Physalis method: enhancements and new capabilities. J. Comput. Phys. 309, 164184.10.1016/j.jcp.2015.12.057CrossRefGoogle Scholar
Solomatov, V.S., Olson, P. & Stevenson, D.J. 1993 Entrainment from a bed of particles by thermal convection. Earth Planet. Sci. Lett. 120, 387393.CrossRefGoogle Scholar
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D. & Ngan, F. 2015 NOAA’s HYSPLIT atmospheric and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 20592077.10.1175/BAMS-D-14-00110.1CrossRefGoogle Scholar
Stevens, R.J., Blass, A., Zhu, X., Verzicco, R. & Lohse, D. 2018 Turbulent thermal superstructures in Rayleigh–Bénard convection. Phys. Rev. Fluids 3 (4), 041501.10.1103/PhysRevFluids.3.041501CrossRefGoogle Scholar
Takeuchi, S., Tsutsumi, T., Kondo, K., Harada, T. & Kajishima, T. 2015 Heat transfer in natural convection with finite-sized particles considering thermal conductance due to inter-particle contacts. Comput. Therm. Sci. 7, 385404.CrossRefGoogle Scholar
Vowinckel, B., Biegert, E., Meiburg, E., Aussillous, P. & Guazzelli, É. 2021 Rheology of mobile sediment beds sheared by viscous, pressure-driven flows. J. Fluid Mech. 921, A20.10.1017/jfm.2021.457CrossRefGoogle Scholar
Wang, Y., Sierakowski, A.J. & Prosperetti, A. 2017 Fully-resolved simulation of particulate flows with particles–fluid heat transfer. J. Comput. Phys. 3, 638656.10.1016/j.jcp.2017.07.044CrossRefGoogle Scholar
Wu, H., Karzhaubayev, K., Shen, J. & Wang, L.P. 2024 Direct numerical simulation of three-dimensional particle-laden thermal convection using the lattice Boltzmann method. Comput. Fluids 276, 106268.10.1016/j.compfluid.2024.106268CrossRefGoogle Scholar
Zhou, Q., Stevens, R.J., Sugiyama, K., Grossmann, S., Lohse, D. & Xia, K. 2010 Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 664, 297312.CrossRefGoogle Scholar
Supplementary material: File

Chen et al. supplementary movie 1

The right frame displays the 3D particle configuration for the case with Ra=107, Pr=1 and Γ=4, where only warm particles ((Tp-T0)/(Th-Tc)≥ 0.0625) are shown and color-coded according to their temperatures. Red represents hotter particles, while blue indicates relatively cooler ones. Note that the apparent disappearance of particles near the top wall occurs because the particles are discarded as long as their temperatures drop below the threshold when they approach the top wall. The left frame illustrates the vertical velocity contour on a horizontal plane located 1.25dp above the bottom plate, along with particles sit between this plane and the bottom wall, corresponding to the same case as depicted in the right frame. In the contour, yellow and purple denote ascending and descending plumes, respectively. Meanwhile, the particles are colored based on their temperatures, with yellow representing hot particles and blue representing cooler ones.
Download Chen et al. supplementary movie 1(File)
File 26.5 MB