Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-22T08:59:12.363Z Has data issue: false hasContentIssue false

Passive bionic motion of a flexible film in the wake of a circular cylinder: chaos and periodicity, flow–structure interactions and energy evolution

Published online by Cambridge University Press:  10 May 2024

Fan Duan
Affiliation:
Key Laboratory of Fluid Mechanics, Ministry of Education, Beijing 100191, PR China Institute of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
Jin-Jun Wang*
Affiliation:
Key Laboratory of Fluid Mechanics, Ministry of Education, Beijing 100191, PR China Institute of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191, PR China
*
Email address for correspondence: jjwang@buaa.edu.cn

Abstract

The self-sustained interactions between a flexible film and periodic vortices epitomize the spirit of fish swimming and flag flapping in nature, involving intricate patterns of flow–structure coupling. Here, we comprehensively investigate the multiple coupling states of a film in the cylinder wake mainly with experiments, complemented by theoretical solutions and nonlinear dynamical analyses. Four regimes of film motion states are identified in the parameter space spanned by the reduced velocity and the length ratio. These regimes are (i) keeping stationary, (ii) deflection flutter, (iii) hybrid flutter and (iv) periodic large-amplitude flapping, each governed by a distinct coupling mechanism, involving regular and irregular Kármán vortices, local instability of the elongated shear layers and 2P mode vortex shedding. The film futtering in regimes (ii) and (iii) is substantiated to be chaotic and bears a resemblance to the ‘entraining state’ of fish behind an obstacle in the river. The periodic flapping in regime (iv) manifests itself in an amalgam of standing and travelling waves, and has intrinsic relations to the ‘Kármán gaiting’ of fish in periodic vortices. With the spatiotemporal reconstruction for the periodic flapping, we procure the energy distributions on the film, revealing the energy transfer processes between the film and the large-scale vortices. The findings unequivocally indicate that the flow–structure interaction during the energy-release stage of the film is more intense than that during the energy-extraction stage. Given the similarities, the mathematical and physical methods presented in this work are also applicable to the research on biological undulatory locomotion.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H. 2012 Analysis of Observed Chaotic Data, 1st edn. Institute for Nonlinear Science. Springer Science & Business Media.Google Scholar
Abarbanel, H.D.I., Brown, R., Sidorowich, J.J. & Tsimring, L.S. 1993 The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65 (4), 13311392.CrossRefGoogle Scholar
Ahlberg, J.H., Nilson, E.N. & Walsh, J.L. 2016 The Theory of Splines and Their Applications. Mathematics in Science and Engineering: A Series of Monographs and Textbooks. Academic Press.Google Scholar
Akanyeti, O. & Liao, J.C. 2013 a The effect of flow speed and body size on Kármán gait kinematics in rainbow trout. J. Expl Biol. 216 (18), 3442–3449.Google ScholarPubMed
Akanyeti, O. & Liao, J.C. 2013 b A kinematic model of Kármán gaiting in rainbow trout. J. Expl Biol. 216 (24), 4666–4677.Google ScholarPubMed
Akaydin, H.D., Elvin, N. & Andreopoulos, Y. 2010 Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp. Fluids 49 (1), 291304.CrossRefGoogle Scholar
Akima, H. 1970 A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17 (4), 589602.CrossRefGoogle Scholar
Alben, S. 2012 The attraction between a flexible filament and a point vortex. J. Fluid Mech. 697, 481503.CrossRefGoogle Scholar
Alben, S. & Shelley, M.J. 2008 Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos. Phys. Rev. Lett. 100 (7), 074301.CrossRefGoogle Scholar
Anderson, E.A. & Szewczyk, A.A. 1997 Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Exp. Fluids 23 (2), 161174.CrossRefGoogle Scholar
Apelt, C.J., West, G.S. & Szewczyk, A.A. 1973 The effects of wake splitter plates on the flow past a circular cylinder in the range $10^{4} < R <5 \times 10^{4}$. J. Fluid Mech. 61 (1), 187198.CrossRefGoogle Scholar
Argentina, M. & Mahadevan, L. 2005 Fluid-flow-induced flutter of a flag. Proc. Natl Acad. Sci. USA 102 (6), 18291834.CrossRefGoogle ScholarPubMed
Ashraf, I., Bradshaw, H., Ha, T.-T., Halloy, J., Godoy-Diana, R. & Thiria, B. 2017 Simple phalanx pattern leads to energy saving in cohesive fish schooling. Proc. Natl Acad. Sci. 114 (36), 95999604.CrossRefGoogle ScholarPubMed
Barnett, T.P. 1983 Interaction of the monsoon and pacific trade wind system at interannual time scales part I: the equatorial zone. Mon. Weath. Rev. 111 (4), 756773.2.0.CO;2>CrossRefGoogle Scholar
Beal, D.N., Hover, F.S., Triantafyllou, M.S., Liao, J.C. & Lauder, G.V. 2006 Passive propulsion in vortex wakes. J. Fluid Mech. 549 (-1), 385.CrossRefGoogle Scholar
Bearman, P.W. 1965 Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates. J. Fluid Mech. 21 (2), 241255.CrossRefGoogle Scholar
Beaudan, P.B. 1995 Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Doctoral thesis, Stanford University.Google Scholar
Bingham, C., Morton, C. & Martinuzzi, R.J. 2018 Influence of control cylinder placement on vortex shedding from a circular cylinder. Exp. Fluids 59 (10), 158.CrossRefGoogle Scholar
Bourgoyne, D.A., Ceccio, S.L. & Dowling, D.R. 2005 Vortex shedding from a hydrofoil at high Reynolds number. J. Fluid Mech. 531, 293324.CrossRefGoogle Scholar
Castagna, M., Mazellier, N. & Kourta, A. 2018 Wake of super-hydrophobic falling spheres: influence of the air layer deformation. J. Fluid Mech. 850, 646673.CrossRefGoogle Scholar
Castro, I.P. & Haque, A. 1987 The structure of a turbulent shear layer bounding a separation region. J. Fluid Mech. 179, 439468.CrossRefGoogle Scholar
Cellucci, C.J., Albano, A.M. & Rapp, P.E. 2003 Comparative study of embedding methods. Phys. Rev. E 67 (6), 066210.CrossRefGoogle ScholarPubMed
Cerezo, A., Godfrey, T.J., Sijbrandij, S.J., Smith, G.D.W. & Warren, P.J. 1998 Performance of an energy-compensated three-dimensional atom probe. Rev. Sci. Instrum. 69 (1), 4958.CrossRefGoogle Scholar
Chen, M., Jia, L.-B., Wu, Y.-F., Yin, X.-Z. & Ma, Y.-B. 2014 Bifurcation and chaos of a flag in an inviscid flow. J. Fluids Struct. 45, 124137.CrossRefGoogle Scholar
Chopra, G. & Mittal, S. 2019 Drag coefficient and formation length at the onset of vortex shedding. Phys. Fluids 31 (1), 013601.CrossRefGoogle Scholar
Coene, R. 1992 Flutter of slender bodies under axial stress. Appl. Sci. Res. 49 (1), 175187.CrossRefGoogle Scholar
Connell, B.S.H. & Yue, D.K.P. 2007 Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 3367.CrossRefGoogle Scholar
Cui, G.-P., Feng, L.-H. & Hu, Y.-W. 2022 Flow-induced vibration control of a circular cylinder by using flexible and rigid splitter plates. Ocean Engng 249, 110939.CrossRefGoogle Scholar
Deng, Y., Tang, Y., Wang, P. & Liu, Y. 2021 Fluid–structure interaction of a flexible membrane under movement-induced excitation (MIE), extraneously induced excitation (EIE), and coupled MIE–EIE. Phys. Fluids 33 (6), 065101.CrossRefGoogle Scholar
Duan, F. & Wang, J. 2021 Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate. J. Fluid Mech. 920, A6.CrossRefGoogle Scholar
Eloy, C., Kofman, N. & Schouveiler, L. 2012 The origin of hysteresis in the flag instability. J. Fluid Mech. 691, 583593.CrossRefGoogle Scholar
Eloy, C., Lagrange, R., Souilliez, C. & Schouveiler, L. 2008 Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97106.CrossRefGoogle Scholar
Epps, B.P., Truscott, T.T. & Techet, A.H. 2010 Evaluating derivatives of experimental data using smoothing splines. In Mathematical Methods in Engineering International Symposium, pp. 29–38.Google Scholar
Esquivel, P. & Messina, A.R. 2008 Complex empirical orthogonal function analysis of wide-area system dynamics. In 2008 IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1–7. IEEE.CrossRefGoogle Scholar
Fan, J. & Gijbels, I. 1996 Local Polynomial Modelling and Its Applications, 1st edn. Monographs on Statistics and Applied Probability, vol. 66. Chapman & Hall/CRC. Available at: https://www.taylorfrancis.com/books/mono/10.1201/9780203748725/local-polynomial-modelling-applications-jianqing-fan.Google Scholar
Fraser, A.M. & Swinney, H.L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (2), 11341140.CrossRefGoogle ScholarPubMed
Furquan, M. & Mittal, S. 2021 Multiple lock-ins in vortex-induced vibration of a filament. J. Fluid Mech. 916, R1.CrossRefGoogle Scholar
Gavin, H.P. 2023 The levenberg-marquardt algorithm for nonlinear least squares curve-fitting problems. Available at: https://people.duke.edu/~hpgavin/m-files/.Google Scholar
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
Govardhan, R. & Williamson, C.H.K. 2001 Mean and fluctuating velocity fields in the wake of a freely-vibrating cylinder. J. Fluids Struct. 15 (3), 489501.CrossRefGoogle Scholar
Goza, A., Colonius, T. & Sader, J.E. 2018 Global modes and nonlinear analysis of inverted-flag flapping. J. Fluid Mech. 857, 312344.CrossRefGoogle Scholar
Green, M.A., Rowley, C.W. & Haller, G. 2007 Detection of lagrangian coherent structures in three-dimensional turbulence. J. Fluid Mech. 572, 111120.CrossRefGoogle Scholar
Griffin, O.M. 1995 A note on bluff body vortex formation. J. Fluid Mech. 284, 217224.CrossRefGoogle Scholar
Guo, Q.F. & Wang, J.J. 2023 High-accuracy 3-D deformation measurement method with an improved structured-light principle. Sci. China Technol. Sci. 66 (12), 34503461.CrossRefGoogle Scholar
Haller, G. & Yuan, G. 2000 Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys. D: Nonlinear Phenom. 147 (3-4), 352370.CrossRefGoogle Scholar
Hamming, R.W. 1997 Digital Filters, revised edn. Dover Publications.Google Scholar
Hannachi, A., Jolliffe, I.T. & Stephenson, D.B. 2007 Empirical orthogonal functions and related techniques in atmospheric science: a review. Intl J. Climatol. 27 (9), 11191152.CrossRefGoogle Scholar
Hansen, P.C., Pereyra, V. & Scherer, G. 2013 Least Squares Data Fitting with Applications. Johns Hopkins University Press.Google Scholar
He, G.-S., Pan, C., Feng, L.-H., Gao, Q. & Wang, J.-J. 2016 Evolution of lagrangian coherent structures in a cylinder-wake disturbed flat plate boundary layer. J. Fluid Mech. 792, 274306.CrossRefGoogle Scholar
He, X. & Wang, J.-J. 2020 Fluid–structure interaction of a flexible membrane wing at a fixed angle of attack. Phys. Fluids 32 (12), 127102.CrossRefGoogle Scholar
He, G.-S., Wang, J.-J., Pan, C., Feng, L.-H., Gao, Q. & Rinoshika, A. 2017 Vortex dynamics for flow over a circular cylinder in proximity to a wall. J. Fluid Mech. 812, 698720.CrossRefGoogle Scholar
Hœpffner, J. & Naka, Y. 2011 Oblique waves lift the flapping flag. Phys. Rev. Lett. 107 (19), 194502.CrossRefGoogle ScholarPubMed
Hu, Y., Pan, C. & Wang, J.J. 2014 Vortex structure for flow over a heaving cylinder with a flexible tail. Exp. Fluids 55 (2), 1682.CrossRefGoogle Scholar
Huang, W.-X. & Sung, H.J. 2010 Three-dimensional simulation of a flapping flag in a uniform flow. J. Fluid Mech. 653, 301336.CrossRefGoogle Scholar
Iyer, P.S. & Mahesh, K. 2016 A numerical study of shear layer characteristics of low-speed transverse jets. J. Fluid Mech. 790, 275307.CrossRefGoogle Scholar
Jia, L. 2014 The Interaction Between Flexible Plates and Fluid in Two-dimensional Flow, 1st edn, Springer Theses. Springer.CrossRefGoogle Scholar
Jia, L.-B., Li, F., Yin, X.-Z. & Yin, X.-Y. 2007 Coupling modes between two flapping filaments. J. Fluid Mech. 581, 199220.CrossRefGoogle Scholar
Jia, L.-B. & Yin, X.-Z. 2008 Passive oscillations of two tandem flexible filaments in a flowing soap film. Phys. Rev. Lett. 100 (22), 228104.CrossRefGoogle Scholar
Kantz, H. & Schreiber, T. 2003 Nonlinear Time Series Analysis, 2nd edn. Cambridge University Press.CrossRefGoogle Scholar
Kennel, M.B., Brown, R. & Abarbanel, H.D.I. 1992 Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45 (6), 34033411.CrossRefGoogle ScholarPubMed
Kim, D., Cossé, J., Huertas Cerdeira, C. & Gharib, M. 2013 Flapping dynamics of an inverted flag. J. Fluid Mech. 736, R1.CrossRefGoogle Scholar
Kim, H., Kang, S. & Kim, D. 2017 Dynamics of a flag behind a bluff body. J. Fluids Struct. 71, 114.CrossRefGoogle Scholar
Kundu, A., Soti, A.K., Bhardwaj, R. & Thompson, M.C. 2017 The response of an elastic splitter plate attached to a cylinder to laminar pulsatile flow. J. Fluids Struct. 68, 423443.CrossRefGoogle Scholar
Lee, J. & You, D. 2013 Study of vortex-shedding-induced vibration of a flexible splitter plate behind a cylinder. Phys. Fluids 25 (11), 110811.CrossRefGoogle Scholar
Liao, J.C. 2006 The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J. Expl Biol. 209 (20), 40774090.CrossRefGoogle ScholarPubMed
Liao, J.C. 2007 A review of fish swimming mechanics and behaviour in altered flows. Phil. Trans. R. Soc. B 362 (1487), 19731993.CrossRefGoogle ScholarPubMed
Liao, J.C., Beal, D.N., Lauder, G.V. & Triantafyllou, M.S. 2003 a Fish exploiting vortices decrease muscle activity. Science 302 (5650), 15661569.CrossRefGoogle ScholarPubMed
Liao, J.C., Beal, D.N., Lauder, G.V. & Triantafyllou, M.S. 2003 b The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J. Expl Biol. 206 (6), 10591073.CrossRefGoogle Scholar
Lilly, J.M. 2017 Element analysis: a wavelet-based method for analysing time-localized events in noisy time series. Proc. R. Soc. A: Math. Phys. Engng Sci. 473 (2200), 20160776.CrossRefGoogle ScholarPubMed
Liu, K., Deng, J. & Mei, M. 2016 Experimental study on the confined flow over a circular cylinder with a splitter plate. Flow Meas. Instrum. 51, 95104.CrossRefGoogle Scholar
Lucas, K.N., Johnson, N., Beaulieu, W.T., Cathcart, E., Tirrell, G., Colin, S.P., Gemmell, B.J., Dabiri, J.O. & Costello, J.H. 2014 Bending rules for animal propulsion. Nat. Commun. 5 (1), 3293.CrossRefGoogle ScholarPubMed
MacMillan, T. & Richter, D.H. 2021 The most robust representations of flow trajectories are lagrangian coherent structures. J. Fluid Mech. 927, A26.CrossRefGoogle Scholar
Madsen, H., Nielsen, H.B. & Tingleff, O. 2004 Methods for Non-Linear Least Squares Problems, 2nd edn. Technical University of Denmark.Google Scholar
Majumdar, D., Bose, C. & Sarkar, S. 2022 Transition boundaries and an order-to-chaos map for the flow field past a flapping foil. J. Fluid Mech. 942, A40.CrossRefGoogle Scholar
Mañé, R. 1981 On the dimension of the compact invariant sets of certain non-linear maps. In Dynamical Systems and Turbulence, Warwick 1980 (ed. D. Rand & L.-S. Young), Lecture Notes in Mathematics, vol. 1, pp. 230–242. Springer.CrossRefGoogle Scholar
Mansoor, M.M., Vakarelski, I.U., Marston, J.O., Truscott, T.T. & Thoroddsen, S.T. 2017 Stable–streamlined and helical cavities following the impact of leidenfrost spheres. J. Fluid Mech. 823, 716754.CrossRefGoogle Scholar
Mao, Q., Liu, Y. & Sung, H.J. 2022 Drag reduction by flapping a flexible filament behind a stationary cylinder. Phys. Fluids 34 (8), 087123.Google Scholar
Michelin, S. & Doaré, O. 2013 Energy harvesting efficiency of piezoelectric flags in axial flows. J. Fluid Mech. 714, 489504.CrossRefGoogle Scholar
Michelin, S., Llewellyn Smith, S.G. & Glover, B.J. 2008 Vortex shedding model of a flapping flag. J. Fluid Mech. 617, 110.CrossRefGoogle Scholar
Minelli, G., Dong, T., Noack, B.R. & Krajnović, S. 2020 Upstream actuation for bluff-body wake control driven by a genetically inspired optimization. J. Fluid Mech. 893, A1.CrossRefGoogle Scholar
Moler, C. 2019 Makima piecewise cubic interpolation. Available at: https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/.Google Scholar
Müller, U.K. 2003 Fish ’n flag. Science 302 (5650), 15111512.CrossRefGoogle ScholarPubMed
Nayak, A. 2020 A new regularization approach for numerical differentiation. Inverse Probl. Sci. Engng 28 (12), 17471772.CrossRefGoogle Scholar
Ojo, O., Wang, Y.-C., Erturk, A. & Shoele, K. 2022 Aspect ratio-dependent hysteresis response of a heavy inverted flag. J. Fluid Mech. 942, A4.CrossRefGoogle Scholar
Olhede, S.C. & Walden, A.T. 2002 Generalized Morse wavelets. IEEE Trans. Signal Process. 50 (11), 26612670.CrossRefGoogle Scholar
Oracal 2023 Oracal 6510 fluorescent cast: #039 red fluorescent. Available at: https://www.orafol.com/en/americas/products/oracal-6510-fluorescent-cast.Google Scholar
Ortega-Jimenez, V.M., Greeter, J.S.M., Mittal, R. & Hedrick, T.L. 2013 Hawkmoth flight stability in turbulent vortex streets. J. Expl Biol. 216 (24), 4567–4579.CrossRefGoogle ScholarPubMed
Ortega-Jiménez, V.M. & Sanford, C.P. 2021 Beyond the Kármán gait: knifefish swimming in periodic and irregular vortex streets. J. Expl Biol. 224 (10), jeb238808.CrossRefGoogle ScholarPubMed
Pan, C., Wang, H. & Wang, J. 2013 Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas. Sci. Technol. 24 (5), 055305.CrossRefGoogle Scholar
Pan, C., Wang, J.J. & Zhang, C. 2009 Identification of lagrangian coherent structures in the turbulent boundary layer. Sci. China Ser. G-Phys. Mech. Astron. 52 (2), 248257.CrossRefGoogle Scholar
Parnaudeau, P., Carlier, J., Heitz, D. & Lamballais, E. 2008 Experimental and numerical studies of the flow over a circular cylinder at reynolds number 3900. Phys. Fluids 20 (8), 085101.CrossRefGoogle Scholar
Pfister, J.-L. & Marquet, O. 2020 Fluid–structure stability analyses and nonlinear dynamics of flexible splitter plates interacting with a circular cylinder flow. J. Fluid Mech. 896, A24.CrossRefGoogle Scholar
Piersol, A.G. & Paez, T.L. 2010 Vibration of systems having distributed mass and elasticity. In Harris’ Shock and Vibration Handbook, 6th edn. McGraw-Hill Education. Available at: https://www.accessengineeringlibrary.com/content/book/9780071508193.Google Scholar
Pikovsky, A. & Politi, A. 2016 Lyapunov Exponents: A Tool to Explore Complex Dynamics, 1st edn. Cambridge University Press.Google Scholar
Pochitaloff, M., et al. 2022 Flagella-like beating of actin bundles driven by self-organized myosin waves. Nat. Phys. 18 (10), 12401247.CrossRefGoogle ScholarPubMed
Portaro, R., Fayed, M., Gunter, A.-L., Abderrahmane, H.A. & Ng, H.D. 2011 Fractal geometry of the wake shed by a flapping filament in flowing soap-film. Fractals 19 (03), 311316.CrossRefGoogle Scholar
Prasad, A. & Williamson, C.H.K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.CrossRefGoogle Scholar
Przybilla, A., Kunze, S., Rudert, A., Bleckmann, H. & Brücker, C. 2010 Entraining in trout: a behavioural and hydrodynamic analysis. J. Expl Biol. 213 (17), 29762986.CrossRefGoogle Scholar
Punzmann, H., Francois, N., Xia, H., Falkovich, G. & Shats, M. 2014 Generation and reversal of surface flows by propagating waves. Nat. Phys. 10 (9), 658663.CrossRefGoogle Scholar
Qian, Z., Fu, C.-L. & Feng, X.-L. 2006 a A modified method for high order numerical derivatives. Appl. Math. Comput. 182 (2), 11911200.Google Scholar
Qian, Z., Fu, C.-L., Xiong, X.-T. & Wei, T. 2006 b Fourier truncation method for high order numerical derivatives. Appl. Math. Comput. 181 (2), 940948.Google Scholar
Qu, Y., Wang, J., Feng, L. & He, X. 2019 Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface. J. Fluid Mech. 880, 764798.CrossRefGoogle Scholar
Rafati, S. & Clemens, N.T. 2020 Frameworks for investigation of nonlinear dynamics: experimental study of the turbulent jet. Phys. Fluids 32 (8), 085112.CrossRefGoogle Scholar
Reinsch, C.H. 1967 Smoothing by spline functions. Numer. Math. 10 (3), 177183.CrossRefGoogle Scholar
Reinsch, C.H. 1971 Smoothing by spline functions. II. Numer. Math. 16 (5), 451454.CrossRefGoogle Scholar
Ristroph, L. & Zhang, J. 2008 Anomalous hydrodynamic drafting of interacting flapping flags. Phys. Rev. Lett. 101 (19), 194502.CrossRefGoogle ScholarPubMed
Roshko, A. 1993 Perspectives on bluff body aerodynamics. J. Wind Engng Ind. Aerodyn. 49 (1-3), 79100.CrossRefGoogle Scholar
Sader, J.E., Cossé, J., Kim, D., Fan, B. & Gharib, M. 2016 Large-amplitude flapping of an inverted flag in a uniform steady flow–a vortex-induced vibration. J. Fluid Mech. 793, 524555.CrossRefGoogle Scholar
Sahu, T.R., Furquan, M. & Mittal, S. 2019 Numerical study of flow-induced vibration of a circular cylinder with attached flexible splitter plate at low. J. Fluid Mech. 880, 551593.CrossRefGoogle Scholar
Savitzky, A. & Golay, M.J.E. 1964 Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36 (8), 16271639.CrossRefGoogle Scholar
Schafer, R. 2011 What is a savitzky-golay filter? [lecture notes]. IEEE Signal Process. Mag. 28 (4), 111117.CrossRefGoogle Scholar
Shadden, S.C., Lekien, F. & Marsden, J.E. 2005 Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodic flows. Phys. D: Nonlinear Phenom. 212 (3-4), 271304.CrossRefGoogle Scholar
Sharma, K.R. & Dutta, S. 2020 Flow control over a square cylinder using attached rigid and flexible splitter plate at intermediate flow regime. Phys. Fluids 32 (1), 014104.CrossRefGoogle Scholar
Sharma, K.R. & Dutta, S. 2021 Influence of length and effective stiffness of an attached flexible foil for flow over a square cylinder. J. Fluids Struct. 104, 103298.CrossRefGoogle Scholar
Shelley, M., Vandenberghe, N. & Zhang, J. 2005 Heavy flags undergo spontaneous oscillations in flowing water. Phys. Rev. Lett. 94 (9), 094302.CrossRefGoogle ScholarPubMed
Shelley, M.J. & Zhang, J. 2011 Flapping and bending bodies interacting with fluid flows. Annu. Rev. Fluid Mech. 43 (1), 449465.CrossRefGoogle Scholar
Shoele, K. & Mittal, R. 2016 Energy harvesting by flow-induced flutter in a simple model of an inverted piezoelectric flag. J. Fluid Mech. 790, 582606.CrossRefGoogle Scholar
Shukla, S., Govardhan, R.N. & Arakeri, J.H. 2013 Dynamics of a flexible splitter plate in the wake of a circular cylinder. J. Fluids Struct. 41, 127134.CrossRefGoogle Scholar
Shukla, S., Govardhan, R.N. & Arakeri, J.H. 2023 Flow over a circular cylinder with a flexible splitter plate. J. Fluid Mech. 973, A19.CrossRefGoogle Scholar
Szepessy, S. & Bearman, P.W. 1992 Aspect ratio and end plate effects on vortex shedding from a circular cylinder. J. Fluid Mech. 234 (-1), 191.CrossRefGoogle Scholar
Taguchi, M. & Liao, J.C. 2011 Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J. Expl Biol. 214 (9), 14281436.CrossRefGoogle ScholarPubMed
Takens, F. 1981 Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (ed. D. Rand & L.-S. Young), Lecture Notes in Mathematics, pp. 366–381. Springer.CrossRefGoogle Scholar
Taneda, S. 1968 Waving motions of flags. J. Phys. Soc. Japan 24 (2), 392401.CrossRefGoogle Scholar
Tape 665 of 3M$^{\rm TM}$ 2023 3m$^{\rm TM}$ removable repositionable tape 665. Available at: https://www.3m.com/3M/en_US/p/d/b40071900/.Google Scholar
Taylor, G.W., Burns, J.R., Kammann, S.A., Powers, W.B. & Welsh, T.R. 2001 The energy harvesting Eel: a small subsurface ocean/river power generator. IEEE J. Ocean. Engng 26 (4), 539547.CrossRefGoogle Scholar
Taylor, G.K., Nudds, R.L. & Thomas, A.L.R. 2003 Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature 425 (6959), 707711.CrossRefGoogle Scholar
Tong, Y., Xia, J. & Chen, L. 2021 Study on energy extraction of Kármán gait hydrofoils from passing vortices. Phys. Fluids 33 (12), 121906.CrossRefGoogle Scholar
Triantafyllou, G.S. 1992 Physical condition for absolute instability in inviscid hydroelastic coupling. Phys. Fluids A: Fluid Dyn. 4 (3), 544552.CrossRefGoogle Scholar
Truscott, T.T., Epps, B.P. & Techet, A.H. 2012 Unsteady forces on spheres during free-surface water entry. J. Fluid Mech. 704, 173210.CrossRefGoogle Scholar
Uddin, E., Huang, W.-X. & Sung, H.J. 2015 Actively flapping tandem flexible flags in a viscous flow. J. Fluid Mech. 780, 120142.CrossRefGoogle Scholar
Unal, M.F. & Rockwell, D. 1988 On vortex formation from a cylinder. Part 2. Control by splitter-plate interference. J. Fluid Mech. 190, 513529.CrossRefGoogle Scholar
Van Buskirk, J. & McCollum, S.A. 2000 Influence of tail shape on tadpole swimming performance. J. Expl Biol. 203 (14), 21492158.Google ScholarPubMed
Wahba, G. 1990 Spline Models for Observational Data. Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
Wallot, S. & Mønster, D. 2018 Calculation of average mutual information (ami) and false-nearest neighbors (fnn) for the estimation of embedding parameters of multidimensional time series in matlab. Front. Psychol. 9, 1679.CrossRefGoogle ScholarPubMed
Wang, J.-S. & Wang, J.-J. 2021 a Vortex dynamics for flow around the slat cove at low reynolds numbers. J. Fluid Mech. 919, A27.CrossRefGoogle Scholar
Wang, J.-S. & Wang, J.-J. 2021 b Wake-induced transition in the low-reynolds-number flow over a multi-element airfoil. J. Fluid Mech. 915, A28.CrossRefGoogle Scholar
Wang, Q., Gan, L., Xu, S. & Zhou, Y. 2020 Vortex evolution in the near wake behind polygonal cylinders. Exp. Therm. Fluid Sci. 110, 109940.CrossRefGoogle Scholar
Wang, T., Ren, Z., Hu, W., Li, M. & Sitti, M. 2021 Effect of body stiffness distribution on larval fish–like efficient undulatory swimming. Sci. Adv. 7 (19), eabf7364.CrossRefGoogle ScholarPubMed
Webb, P.W. 1998 Entrainment by river chub nocomis micropogon and smallmouth bass micropterus dolomieu on cylinders. J. Expl Biol. 201 (16), 24032412.CrossRefGoogle ScholarPubMed
Weihs, D. 1973 Hydromechanics of fish schooling. Nature 241 (5387), 290291.CrossRefGoogle Scholar
West, G.S. & Apelt, C.J. 1997 Fluctuating lift and drag forces on finite lengths of a circular cylinder in the subcritical Reynolds number range. J. Fluids Struct. 11 (2), 135158.CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28 (1), 477539.CrossRefGoogle Scholar
Wolf, A., Swift, J.B., Swinney, H.L. & Vastano, J.A. 1985 Determining lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16 (3), 285317.CrossRefGoogle Scholar
Wu, J., Qiu, Y.L., Shu, C. & Zhao, N. 2014 Flow control of a circular cylinder by using an attached flexible filament. Phys. Fluids 26 (10), 103601.CrossRefGoogle Scholar
Yeaton, I.J., Ross, S.D., Baumgardner, G.A. & Socha, J.J. 2020 Undulation enables gliding in flying snakes. Nat. Phys. 16 (9), 974982.CrossRefGoogle Scholar
Yu, Y. & Liu, Y. 2015 Flapping dynamics of a piezoelectric membrane behind a circular cylinder. J. Fluids Struct. 55, 347363.CrossRefGoogle Scholar
Zdravkovich, M.M. 1969 Smoke observations of the formation of a Kármán vortex street. J. Fluid Mech. 37 (3), 491496.CrossRefGoogle Scholar
Zdravkovich, M.M. 1996 Different modes of vortex shedding: an overview. J. Fluids Struct. 10 (5), 427437.CrossRefGoogle Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408 (6814), 835839.CrossRefGoogle Scholar
Supplementary material: File

Duan and Wang supplementary movie 1

(Left) Small-amplitude deflection flutter of the film with the length of L/D=1.0 in 2 seconds (about 180 periods of vortex shedding), corresponding to regime (ii) in figure 1(a) of the main text. (Right) Phase trajectory of the trailing edge, which evolves simultaneously with the film flutter shown in the left panel. The frame rate of the movie is 15 frames per second and the physical time interval between two successive frames is 1/800 s; thus, the flutter is slowed down by about 50x in this movie. The color of the instantaneous deformation of the film in the left panel AND the instantaneous phase point in the right panel is changed abiding by the color scale, which visually represents the physical time variation. For clarity, in the right panel, we just retain the color of the phase trajectory within about 12 periods of the vortex shedding, beyond which the phase trajectory is prescribed to be gray.
Download Duan and Wang supplementary movie 1(File)
File 10.1 MB
Supplementary material: File

Duan and Wang supplementary movie 2

(Left) Small-amplitude hybrid flutter of the film with the length of L/D=3.0 in 2 seconds (about 150 periods of vortex shedding), corresponding to regime (iii) in figure 1(a) of the main text. (Right) Phase trajectory of the trailing edge, which evolves simultaneously with the film flutter shown in the left panel. Other details of this movie are the same as those described in the caption for movie 1.
Download Duan and Wang supplementary movie 2(File)
File 6.3 MB
Supplementary material: File

Duan and Wang supplementary movie 3

(Left) Large-amplitude periodic flapping of the film with the length of L/D=5.0 in 2 seconds (about 60 periods of vortex shedding), corresponding to regime (iv) in figure 1(a) of the main text. (Right) Phase trajectories of the trailing edge (point of s/D=5, the red point) and the point of s/D=3 (the blue point), which evolve simultaneously with the film flapping shown in the left panel. Other details of this movie are the same as those described in the caption for movie 1.
Download Duan and Wang supplementary movie 3(File)
File 10.3 MB
Supplementary material: File

Duan and Wang supplementary movie 4

The complete coupling interactions between the film with L/D=5.0 and the flow field are shown by the evolution of the Lagrangian coherent structures (LCSs) over 10 vortex shedding periods. The LCSs are extracted by finite time Lyapunov exponent. The frame rate of this movie is 10 frames per second and the physical time interval between two successive frames is 1/800 s; thus, the interactions between the film and the flow field are slowed down by 80x in this movie.
Download Duan and Wang supplementary movie 4(File)
File 7.7 MB