Skip to main content

Penetrative internally heated convection in two and three dimensions

  • David Goluskin (a1) and Erwin P. van der Poel (a2)

Convection of an internally heated fluid, confined between top and bottom plates of equal temperature, is studied by direct numerical simulation in two and three dimensions. The unstably stratified upper region drives convection that penetrates into the stably stratified lower region. The fraction of produced heat escaping across the bottom plate, which is one half without convection, initially decreases as convection strengthens. Entering the turbulent regime, this decrease reverses in two dimensions but continues monotonically in three dimensions. The mean fluid temperature, which grows proportionally to the heating rate ( $H$ ) without convection, grows proportionally to $H^{4/5}$ when convection is strong in both two and three dimensions. The ratio of the heating rate to the fluid temperature is likened to the Nusselt number of Rayleigh–Bénard convection. Simulations are reported for Prandtl numbers between 0.1 and 10 and for Rayleigh numbers (defined in terms of the heating rate) up to $5\times 10^{10}$ .

Corresponding author
Email address for correspondence:
Hide All
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.
Asfia, F. J. & Dhir, V. K. 1996 An experimental study of natural convection in a volumetrically heated spherical pool bounded on top with a rigid wall. Nucl. Engng Des. 163 (3), 333348.
Chandrasekhar, S. 1981 Hydrodynamic and Hydromagnetic Stability. Dover.
Constantin, P. & Doering, C. R. 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection. Phys. Rev. E 53 (6), 59575981.
Emara, A. A. & Kulacki, F. A. 1980 A numerical investigation of thermal convection in a heat-generating fluid layer. Trans. ASME J. Heat Transfer 102, 531537.
Fisher, P. F., Lottes, J. W. & Kerkemeier, S. G.2016, nek5000 Web page.
Goluskin, D. 2015 Internally Heated Convection and Rayleigh–Bénard Convection. Springer.
Goluskin, D. & Spiegel, E. A. 2012 Convection driven by internal heating. Phys. Lett. A 377 (1–2), 8392.
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grötzbach, G. 1989 Turbulent heat transfer in an internally heated fluid layer. In Refined Flow Modelling and Turbulence Measurements (ed. Iwasa, Y., Tamai, N. & Wada, A.), pp. 267275. Universal Academy.
Grötzbach, G. & Wörner, M. 1999 Direct numerical and large eddy simulations in nuclear applications. Intl J. Heat Fluid Flow 20 (3), 222240.
Hartlep, T., Tilgner, A. & Busse, F. H. 2005 Transition to turbulent convection in a fluid layer heated from below at moderate aspect ratio. J. Fluid Mech. 544, 309322.
Irwin, P. 2009 Giant Planets of Our Solar System: Atmospheres, Composition, and Structure, 2nd edn. Springer.
Jahn, M. & Reineke, H. H. 1974 Free convection heat transfer with internal heat sources, calculations and measurements. In Proceedings of the 5th International Heat Transfer Conference, pp. 7478.
Johnston, H. & Doering, C. R. 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102 (6), 064501.
Kippenhahn, R. & Weigert, A. 1994 Stellar Structure and Evolution. Springer.
Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5 (11), 13741389.
Kulacki, F. A. & Goldstein, R. J. 1972 Thermal convection in a horizontal fluid layer with uniform volumetric energy sources. J. Fluid Mech. 55 (2), 271287.
Lee, S. D., Lee, J. K. & Suh, K. Y. 2007 Boundary condition dependent natural convection in a rectangular pool with internal heat sources. Trans. ASME J. Heat Transfer 129 (5), 679682.
Lu, L., Doering, C. R. & Busse, F. H. 2004 Bounds on convection driven by internal heating. J. Math. Phys. 45 (7), 29672986.
Malkus, W. V. R. 1954 Discrete transitions in turbulent convection. Proc. R. Soc. Lond. A 225 (1161), 185195.
Mayinger, F., Jahn, M., Reineke, H. H. & Steinberner, U.1975 Examination of thermohydraulic processes and heat transfer in a core melt. Tech. Rep. Hannover Technical University, Hannover, Germany.
Nourgaliev, R. R., Dinh, T. N. & Sehgal, B. R. 1997 Effect of fluid Prandtl number on heat transfer characteristics in internally heated liquid pools with Rayleigh numbers up to . Nucl. Engng Des. 169, 165184.
Orlandi, P. & Fatica, M. 1997 Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 4372.
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014 Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Otero, J., Wittenberg, R. W., Worthing, R. A. & Doering, C. R. 2002 Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191199.
Peale, S. J., Cassen, P. & Reynolds, R. T. 1979 Melting of Io by tidal dissipation. Science 203 (4383), 892894.
Peckover, R. S. & Hutchinson, I. H. 1974 Convective rolls driven by internal heat sources. Phys. Fluids 17 (7), 13691371.
Plasting, S. C. & Kerswell, R. R. 2003 Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse’s problem and the Constantin–Doering–Hopf problem with one-dimensional background field. J. Fluid Mech. 477, 363379.
van der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.
van der Poel, E. P., Stevens, R. J. A. M. & Lohse, D. 2013 Comparison between two- and three-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 736, 177194.
Ralph, J. C., McGreevy, R. & Peckover, R. S. 1977 Experiments in tubulent thermal convection driven by internal heat sources. In Heat Transfer and Turbulent Buoyant Convection: Studies and Applications for Natural Environment, Buildings, Engineering Systems (ed. Spalding, D. B. & Afgan, N.), pp. 587599. Hemisphere.
Rayleigh, Lord 1916 On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. 32 (192), 529546.
Schmalzl, J., Breuer, M. & Hansen, U. 2004 On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 67 (3), 390396.
Schubert, G., Turcotte, D. L. & Olson, P. 2001 Mantle Convection in the Earth and Planets. Cambridge University Press.
Shen, Y. & Zikanov, O. 2015 Thermal convection in a liquid metal battery. Theor. Comput. Fluid Dyn. doi:10.1007/s00162-015-0378-1.
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513528.
Spiegel, E. A. 1971 Turbulence in stellar convection zones. Comments Astrophys. Space Phys. 3 (2), 5358.
Stevens, R. J. A. M., van der Poel, E. P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.
Straus, J. M. 1976 Penetrative convection in a layer of fluid heated from within. Astrophys. J. 209, 179189.
Tveitereid, M. 1978 Thermal convection in a horizontal fluid layer with internal heat sources. Intl J. Heat Mass Transfer 21, 335339.
Verzicco, R. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.
Wang, X. M. 2004 Infinite Prandtl number limit of Rayleigh–Bénard convection. Commun. Pure Appl. Maths 57, 12651285.
Wang, X. M. 2008 Stationary statistical properties of Rayleigh–Bénard convection at large Prandtl number. Commun. Pure Appl. Maths 61, 789815.
Wittenberg, R. W. 2010 Bounds on Rayleigh–Bénard convection with imperfectly conducting plates. J. Fluid Mech. 665, 158198.
Wörner, M., Schmidt, M. & Grötzbach, G. 1997 Direct numerical simulation of turbulence in an internally heated convective fluid layer and implications for statistical modeling. J. Hydraul. Res. 35 (6), 773797.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title

Goluskin et al. supplementary movie
Temperature field in a 3D simulation with Pr=1 and R=5×108. The coolest fluid is blue. Warmer fluid is orange, and the hottest fluid is transparent to aid visualization.

 Video (11.1 MB)
11.1 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed