Skip to main content
×
×
Home

Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles

  • Vamsi Spandan (a1), Roberto Verzicco (a1) (a2) and Detlef Lohse (a1) (a3)
Abstract

The phenomenon of drag reduction induced by injection of bubbles into a turbulent carrier fluid has been known for a long time; the governing control parameters and underlying physics is, however, not well understood. In this paper, we use three-dimensional numerical simulations to uncover the effect of deformability of bubbles injected in a turbulent Taylor–Couette flow on the overall drag experienced by the system. We consider two different Reynolds numbers for the carrier flow, i.e.  $Re_{i}=5\times 10^{3}$ and $Re_{i}=2\times 10^{4}$ ; the deformability of the bubbles is controlled through the Weber number, which is varied in the range $We=0.01{-}2.0$ . Our numerical simulations show that increasing the deformability of bubbles (that is, $We$ ) leads to an increase in drag reduction. We look at the different physical effects contributing to drag reduction and analyse their individual contributions with increasing bubble deformability. Profiles of local angular velocity flux show that, in the presence of bubbles, turbulence is enhanced near the inner cylinder while attenuated in the bulk and near the outer cylinder. We connect the increase in drag reduction to the decrease in dissipation in the wake of highly deformed bubbles near the inner cylinder.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: d.lohse@utwente.nl
References
Hide All
van den Berg, T. H., van Gils, D. P. M., Lathrop, D. P. & Lohse, D. 2007 Bubbly turbulent drag reduction is a boundary layer effect. Phys. Rev. Lett. 98 (8), 084501.
van den Berg, T. H., Luther, S., Lathrop, D. P. & Lohse, D. 2005 Drag reduction in bubbly Taylor–Couette turbulence. Phys. Rev. Lett. 94 (4), 044501.
Ceccio, S. L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42, 183203.
Dabiri, S., Lu, J. & Tryggvason, G. 2013 Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids 25 (10), 102110.
Eckhardt, B., Grossmann, S. & Lohse, D. 2007 Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders. J. Fluid Mech. 581, 221250.
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.
Ferrante, A. & Elghobashi, S. 2004 On the physical mechanisms of drag reduction in a spatially developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503, 345355.
van Gils, D. P. M., Narezo Guzman, D., Sun, C. & Lohse, D. 2013 The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J. Fluid Mech. 722, 317347.
Grossmann, S., Lohse, D. & Sun, C. 2016 High Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48 (1), 5380.
Lu, J., Fernández, A. & Tryggvason, G. 2005 The effect of bubbles on the wall drag in a turbulent channel flow. Phys. Fluids 17 (9), 095102.
Lu, J. & Tryggvason, G. 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20 (4), 040701.
L’vov, V. S., Pomyalov, A., Procaccia, I. & Tiberkevich, V. 2005 Drag reduction by microbubbles in turbulent flows: the limit of minute bubbles. Phys. Rev. Lett. 94 (17), 174502.
Murai, Y., Oiwa, H. & Takeda, Y. 2005 Bubble behavior in a vertical Taylor–Couette flow. In J. Physics: Conference Series, vol. 14, p. 143. IOP Publishing.
Murai, Y., Oiwa, H. & Takeda, Y. 2008 Frictional drag reduction in bubbly Couette–Taylor flow. Phys. Fluids 20 (3), 034101.
van der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R. 2015 A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids 116, 1016.
Spandan, V., Lohse, D., de Tullio, M. D. & Verzicco, R.2018 A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations. ARXIV, arXiv:1805.01113.
Spandan, V., Meschini, V., Ostilla-Mónico, R., Lohse, D., Querzoli, G., de Tullio, M. D. & Verzicco, R. 2017a A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. J. Comput. Phys. 348, 567590.
Spandan, V., Ostilla-Mónico, R., Verzicco, R. & Lohse, D. 2016 Drag reduction in numerical two-phase Taylor–Couette turbulence using an Euler–Lagrange approach. J. Fluid Mech. 798, 411435.
Spandan, V., Verzicco, R. & Lohse, D. 2017b Deformable ellipsoidal bubbles in Taylor–Couette flow with enhanced Euler–Lagrangian tracking. Phys. Rev. Fluids 2 (10), 104304.
Sugiyama, K., Calzavarini, E. & Lohse, D. 2008 Microbubbly drag reduction in Taylor–Couette flow in the wavy vortex regime. J. Fluid Mech. 608, 2141.
de Tullio, M. D. & Pascazio, G. 2016 A Moving-Least-Squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 325, 201225.
Verschoof, R. A., van der Veen, R. C. A., Sun, C. & Lohse, D. 2016 Bubble drag reduction requires large bubbles. Phys. Rev. Lett. 117 (10), 104502.
Verzicco, R. & Orlandi, P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.
Zhang, Q. & Prosperetti, A. 2010 Physics-based analysis of the hydrodynamic stress in a fluid-particle system. Phys. Fluids 22 (3), 033306.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed