Skip to main content Accessibility help
×
×
Home

Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization

  • Anand U. Oza (a1), Daniel M. Harris (a1), Rodolfo R. Rosales (a1) and John W. M. Bush (a1)

Abstract

We present the results of a theoretical investigation of droplets walking on a rotating vibrating fluid bath. The droplet’s trajectory is described in terms of an integro-differential equation that incorporates the influence of its propulsive wave force. Predictions for the dependence of the orbital radius on the bath’s rotation rate compare favourably with experimental data and capture the progression from continuous to quantized orbits as the vibrational acceleration is increased. The orbital quantization is rationalized by assessing the stability of the orbital solutions, and may be understood as resulting directly from the dynamic constraint imposed on the drop by its monochromatic guiding wave. The stability analysis also predicts the existence of wobbling orbital states reported in recent experiments, and the absence of stable orbits in the limit of large vibrational forcing.

Copyright

Corresponding author

Email address for correspondence: bush@math.mit.edu

References

Hide All
Bacciagaluppi, G. & Valentini, A. 2009 Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference. Cambridge University Press.
Bateman, H. 1944 Partial Differential Equations of Mathematical Physics. Dover.
Bell, J. S. 1988 Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.
de Broglie, L. 1926 Ondes et Mouvements. Gauthier-Villars.
de Broglie, L. 1987 Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis de Broglie 12 (4), 123.
Burinskii, A. 2008 The Dirac–Kerr–Newman electron. Grav. Cosmol. 40 (2), 109122.
Bush, J. W. M. 2010 Quantum mechanics writ large. Proc. Natl Acad. Sci. USA 107 (41), 1745517456.
Cohen-Tannoudji, C., Diu, B. & Laloë, F. 1977 Quantum Mechanics. John Wiley & Sons.
Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 Walking and orbiting droplets. Nature 437, 208.
Crommie, M., Lutz, C. & Eigler, D. 1993 Confinement of electrons to quantum corrals on a metal surface. Science 262, 5131.
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunnelling of a classical wave-particle association. Phys. Rev. Lett. 102, 240401.
Eddi, A., Moukhtar, J., Perrard, S., Fort, E. & Couder, Y. 2012 Level splitting at macroscopic scale. Phys. Rev. Lett. 108, 264503.
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of path memory. J. Fluid Mech. 675, 433463.
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107 (41), 1751517520.
Harris, D. M. & Bush, J. W. M. 2014 Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.
Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001.
Kumar, K. 1996 Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. A 452, 11131126.
Moláček, J. & Bush, J. W. M. 2013a Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.
Moláček, J. & Bush, J. W. M. 2013b Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.
Oza, A. U., Bush, J. W. M. & Rosales, R. R. 2014a Orbital stability in hydrodynamic pilot-wave theory (in preparation).
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.
Oza, A. U., Wind-Willassen, Ø., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014b Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Physics of Fluids (submitted).
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014 Self-organization into quantized eigenstates of a classical wave-driven particle. Nature Commun. 5, 3219.
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle-wave association on a fluid interface. J. Fluid Mech. 554, 85108.
Walker, J. 1978 Drops of liquid can be made to float on the liquid. What enables them to do so?. Sci. Am. 238 (6), 151158.
Watson, G. N. 1966 A Treatise on the Theory of Bessel Functions. 2nd edn. Cambridge University Press.
Weinstein, A. & Pounder, J. R. 1945 An electromagnetic analogy in mechanics. Am. Math. Mont. 52 (8), 432438.
Wind-Willassen, Ø., Moláček, J., Harris, D. M. & Bush, J. W. M. 2013 Exotic states of bouncing and walking droplets. Phys. Fluids 25, 082002.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed