Skip to main content

Pinning of rotating waves to defects in finite Taylor–Couette flow

  • J. R. PACHECO (a1) (a2), J. M. LOPEZ (a1) and F. MARQUES (a3)

Experiments in small aspect-ratio Taylor–Couette flows have reported the presence of a band in parameter space where rotating waves become steady non-axisymmetric solutions (a pinning effect) via infinite-period bifurcations. Previous numerical simulations were unable to reproduce these observations. Recent additional experiments suggest that the pinning effect is not intrinsic to the dynamics of the problem, but rather is an extrinsic response induced by the presence of imperfections. Here we present numerical simulations that include a small tilt of one of the endwalls, simulating the effects of imperfections that break the SO(2) axisymmetry of the problem, and indeed are able to reproduce the experimentally observed pinning of the rotating waves. Dynamical systems considerations suggest that any imperfection breaking the SO(2) axisymmetry of the problem must result in the formation of a pinning region of finite width. We have also found that the particulars of the pinning process, in particular the width of the pinning region, are extremely sensitive to the type of imperfection in the system. Almost identical flows respond in completely different ways to the same imperfection, depending on subtle differences in the weak secondary characteristics of the flow. The numerical simulations of the Navier–Stokes equations for the problem with an imposed tilt of an endwall together with normal-form analysis of a Hopf bifurcation subjected to imposed symmetry-breaking help shed some light on previous experiments that reported a variety of different dynamical behaviour for which a clear explanation was lacking.

Corresponding author
Email address for correspondence:
Hide All
Abshagen J., Heise M., Hoffmann C. & Pfister G. 2008 a Direction reversal of a rotating wave in Taylor–Couette flow. J. Fluid Mech. 607, 199208.
Abshagen J., Lopez J. M., Marques F. & Pfister G. 2005 a Mode competition of rotating waves in reflection-symmetric Taylor–Couette flow. J. Fluid Mech. 540, 269299.
Abshagen J., Lopez J. M., Marques F. & Pfister G. 2005 b Symmetry breaking via global bifurcations of modulated rotating waves in hydrodynamics. Phys. Rev. Lett. 94, 074101.
Abshagen J., Lopez J. M., Marques F. & Pfister G. 2008 b Bursting dynamics due to a homoclinic cascade in Taylor–Couette flow. J. Fluid Mech. 613, 357384.
Baer S. M., Erneux T. & Rinzel J. 1989 The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Maths 49, 5571.
Benjamin T. B. 1978 a Bifurcation phenomena in steady flows of a viscous fluid. Part I. Theory. Proc. R. Soc. Lond. A 359, 126.
Benjamin T. B. 1978 b Bifurcation phenomena in steady flows of a viscous fluid. Part II. Experiments. Proc. R. Soc. Lond. A 359, 2743.
Benjamin T. B. & Mullin T. 1981 Anomalous modes in the Taylor experiment. Proc. R. Soc. Lond. A 377, 221249.
Chossat P. & Iooss G. 1994 The Couette–Taylor Problem. Springer.
Cliffe K. A. 1983 Numerical calculations of two-cell and single-cell Taylor flows. J. Fluid Mech. 135, 219233.
Courant R., Friedrichs K. & Lewy H. 1928 über die partiellen differenzengleichungen der mathematischen Physik. Mathematische Annalen 100, 3274.
Crawford J. D. & Knobloch E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341387.
Fadlun E. A., Verzicco R., Orlandi P. & Mohd-Yusof J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.
Iooss G. & Adelmeyer M. 1998 Topics in Bifurcation Theory and Applications, 2nd edn. World Scientific.
Kang S., Iaccarino G. & Ham F. 2009 DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. J. Comput. Phys. 228, 31893208.
Knobloch E. 1996 Symmetry and instability in rotating hydrodynamic and magnetohydrodynamic flows. Phys. Fluids 8, 14461454.
Kuznetsov Y. A. 2004 Elements of Applied Bifurcation Theory, 3rd edn. Springer.
Lopez J. M. & Marques F. 2009 Centrifugal effects in rotating convection: nonlinear dynamics. J. Fluid Mech. 628, 269297.
Lynch R. E., Rice J. R. & Thomas D. H. 1964 Tensor product analysis of partial difference equations. Bull. Am. Math. Soc. 70, 378384.
Marques F. & Lopez J. M. 2006 Onset of three-dimensional unsteady states in small-aspect ratio Taylor–Couette flow. J. Fluid Mech. 561, 255277.
Marques F., Meseguer A., Lopez J. M. & Pacheco J. R. 2010 Hopf bifurcation with zero frequency and imperfect SO(2) symmetry. Physica D (submitted).
Mullin T., Toya Y. & Tavener S. J. 2002 Symmetry breaking and multiplicity of states in small aspect ratio Taylor–Couette flow. Phys. Fluids 14, 27782787.
Pacheco J. R., Pacheco-Vega A., Rodić T. & Peck R. E. 2005 Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on non-staggered grids. Numer. Heat Transfer B 48, 124.
Pacheco J. R., Ruiz-Angulo A., Zenit R. & Verzicco R. 2010 Fluid velocity fluctuations in a collision of a sphere with a wall. Theor. Comput. Fluid Dyn. (submitted).
Pacheco-Vega A., Pacheco J. R. & Rodić T. 2007 A general scheme for the boundary conditions in convective and diffusive heat transfer with immersed boundary methods. J. Heat Transfer 129, 15061516.
Pfister G., Buzug T. & Enge N. 1992 Characterization of experimental time series from Taylor–Couette flow. Physica D 58, 441454.
Pfister G., Schmidt H., Cliffe K. A. & Mullin T. 1988 Bifurcation phenomena in Taylor–Couette flow in a very short annulus. J. Fluid Mech. 191, 118.
Pfister G., Schulz A. & Lensch B. 1991 Bifurcations and a route to chaos of an one-vortex-state in Taylor–Couette flow. Eur. J. Mech. B-Fluids 10, 247252.
Schaeffer D. G. 1980 Qualitative analysis of a model for boundary effects in the Taylor problem. Math. Proc. Camb. Phil. Soc. 87, 307337.
Stringano G., Pascazio G. & Verzicco R. 2006 Turbulent thermal convection over grooved plates. J. Fluid Mech. 557, 307336.
Strogatz S. 1994 Nonlinear Dynamics and Chaos. Addison-Wesley.
Uhlmann M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448476.
Verzicco R. & Orlandi P. 1996 A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123, 402414.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 20 *
Loading metrics...

Abstract views

Total abstract views: 55 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th February 2018. This data will be updated every 24 hours.