Skip to main content Accessibility help

A poroelastic fluid–structure interaction model of syringomyelia

  • Matthias Heil (a1) and Christopher D. Bertram (a2)


Syringomyelia is a medical condition in which one or more fluid-filled cavities (syrinxes) form in the spinal cord. The syrinxes often form near locations where the spinal subarachnoid space (SSS; the fluid-filled annular region surrounding the spinal cord) is partially obstructed. Previous studies showed that nonlinear interactions between the pulsatile fluid flow in the SSS and the elastic deformation of the tissues surrounding it can generate a fluid pressure distribution that would tend to drive fluid from the SSS into the syrinx if the tissue separating the two regions was porous. This provides a potential explanation for why a partial occlusion of the SSS can induce the growth of an already existing nearby syrinx. We study this hypothesis by analysing the mass transfer between the SSS and the syrinx, using a poroelastic fluid–structure interaction model of the spinal cord that includes a representation of the partially obstructed SSS, the syrinx and the poroelastic tissues surrounding these fluid-filled cavities. Our numerical simulations show that poroelastic fluid–structure interaction can indeed cause an increase (albeit relatively small) in syrinx volume. We analyse the seepage flows and show that their structure can be captured by an analytical model which explains why the increase in syrinx volume tends to be relatively small.


Corresponding author

Email address for correspondence:


Hide All
Amestoy, P. R., Duff, I. S., Koster, J. & L’Excellent, J.-Y. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Applics. 23 (1), 1541.
Badia, S., Quaini, A. & Quarteroni, A. 2009 Coupling Biot and Navier–Stokes equations for modelling fluid-poroelastic media interaction. J. Comput. Phys. 228 (21), 79868014.
Beavers, G. S. & Joseph, D. D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197207.
Berkouk, K. K., Carpenter, P. W. & Lucey, A. D. 2003 Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: basic theory. Trans. ASME J. Biomech. Engng 125, 852856.
Bertram, C. D. 2009 A numerical investigation of waves propagating in the spinal cord and subarachnoid space in the presence of a syrinx. J. Fluids Struct. 25, 11891205.
Bertram, C. D. 2010 Evaluation by fluid/structure-interaction spinal-cord simulation of the effects of subarachnoid-space stenosis on an adjacent syrinx. Trans. ASME J. Biomech. Engng 132, 115.
Bertram, C. D., Brodbelt, A. R. & Stoodley, M. A. 2005 The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. Trans. ASME J. Biomech. Engng 127, 10991109.
Bertram, C. D. & Heil, M. 2016 A poroelastic fluid/structure-interaction model of cerebrospinal fluid dynamics in the cord with syringomyelia and adjacent subarachnoid-space stenosis. Trans. ASME J. Biomech. Engng 139, 011001,1–10.
Bunck, A. C., Kroger, J.-R., Juttner, A., Brentrup, A., Fiedler, B., Schaarschmidt, F., Crelier, G. R., Schwindt, W., Heindel, W., Niederstadt, T. & Maintz, D. 2011 Magnetic resonance 4D flow characteristics of cerebrospinal fluid at the craniocervical junction and the cervical spinal canal. Eur. Radiol. 21, 17881796.
Carpenter, P. W., Berkouk, K. K. & Lucey, A. D. 2003 Pressure wave propagation in fluid-filled co-axial elastic tubes part 2: Mechanisms for the pathogenesis of syringomyelia. Trans. ASME J. Biomech. Engng 125, 857863.
Carraro, T., Goll, C., Marciniak-Czochra, A. & Mikelic, A. 2013 Pressure jump interface law for the Stokes–Darcy coupling: confirmation by direct numerical simulations. J. Fluid Mech. 732, 510536.
Chang, G. L., Hung, T. K. & Feng, W. W. 1988 An in-vivo measurement and analysis of viscoelastic properties of the spinal cord of cats. Trans. ASME J. Biomech. Engng 110, 115122.
Cirovic, S. 2009 A coaxial tube model of the cerebrospinal fluid pulse propagation in the spinal column. Trans. ASME J. Biomech. Engng 131, 021008,1–9.
Cirovic, S. & Kim, M. 2012 A one-dimensional model of the spinal cerebrospinal-fluid compartment. Trans. ASME J. Biomech. Engng 134, 021005,1–10.
Cowin, S. C. 1999 Bone poroelasticity. J. Biomech. 32 (3), 217238.
Detournay, E. & Cheng, A.H.-D. 1993 Fundamentals of poroelasticity. In Comprehensive Rock Engineering: Principles, Practice and Projects, Vol. II, Analysis and Design Method (ed. Fairhurst, C.), pp. 113171. Pergamon Press.
Dreha-Kulaczewski, S., Joseph, A. A., Merboldt, K.-D., Ludwig, H.-C., Gärtner, J. & Frahm, J. 2015 Inspiration is the major regulator of human CSF flow. J. Neurosci. 35 (6), 24852491.
Elliott, N. J. 2012 Syrinx fluid transport: Modeling pressure-wave-induced flux across the spinal pial membrane. Trans. ASME J. Biomech. Engng 134, 031006,6–9.
Elliott, N. S. J., Bertram, C. D., Martin, B. A. & Brodbelt, A. R. 2013 Syringomyelia: a review of the biomechanics. J. Fluids Struct. 40, 124.
Elliott, N. S. J., Lockerby, D. A. & Brodbelt, A. R. 2009 The pathogenesis of syringomyelia: a re-evaluation of the elastic-jump hypothesis. Trans. ASME J. Biomech. Engng 131, 044503,1–6.
Ervin, V. J. 2012 Computational bases for RT k and BDM k on triangles. Comput. Maths Applics. 64, 27652774.
Ervin, V. J. 2013 Approximation of coupled Stokes–Darcy flow in an axisymmetric domain. Comput. Meth. Appl. Mech. Engng 258, 96108.
Gupta, S., Soellinger, M., Boesiger, P., Poulikakos, D. & Kurtcuoglu, V. 2009 Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. Trans. ASME J. Biomech. Engng 131, 021010,1–11.
Gupta, S., Soellinger, M., Grzybowski, D. M., Boesiger, P., Biddiscombe, J., Poulikakos, D. & Kurtcuoglu, V. 2010 Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I: computational model. J. R. Soc. Interface 7, 11951204.
Hazel, A. L., Heil, M., Waters, S. L. & Oliver, J. M. 2012 On the liquid lining in fluid-conveying curved tubes. J. Fluid Mech. 705, 213233.
Heidari Pahlavian, S., Loth, F., Luciano, M., Oshinski, J. & Martin, B. A. 2015 Neural tissue motion impacts cerebrospinal fluid dynamics at the cervical medullary junction: A patient-specific moving-boundary computational model. Ann. Biomed. Engng 43 (12), 29112923.
Heidari Pahlavian, S., Yiallourou, T., Tubbs, R. S., Bunck, A. C., Loth, F., Goodin, M., Raisee, M. & Martin, B. A. 2014 The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS ONE 9 (4), e91888.
Heil, M. & Hazel, A. L. 2006 oomph-lib – an object-oriented multi-physics finite-element library. In Fluid-Structure Interaction (ed. Schäfer, M. & Bungartz, H.-J.), pp. 1949. Springer, oomph-lib is available as open-source software at
Hentschel, S., Mardal, K.-A., Lovgren, A. E., Linge, S. & Haughton, V. 2010 Characterization of cyclic CSF flow in the foramen magnum and upper cervical spinal canal with MR flow imaging and computational fluid dynamics. Amer. J. Neuroradiol. 31, 9971002.
Hewitt, R. E., Hazel, A. L., Clarke, R. J. & Denier, J. P. 2011 Unsteady flow in a torus after a sudden change in rotation rate. J. Fluid Mech. 688, 88119.
Humphreys, J. D. 2008 Mechanisms of arterial remodelling in hypertension: Coupled roles of wall shear and intramural stress. Hypertension 52 (2), 195200.
Kistler, S. F. & Scriven, L. E. 1983 Coating flows. In Computational Analysis of Polymer Processing (ed. Pearson, J. R. A. & Richardson, S. M.), pp. 243299. Applied Science Publishers.
Linninger, A. A., Xenos, M., Zhu, D. C., Somayaji, M. R., Srinivasa Kondapalli, S. & Penn, R. D. 2007 Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Engng 54 (2), 291302.
Loth, F., Yardimci, M. A. & Alperin, N. 2001 Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. Trans. ASME J. Biomech. Engng 123 (1), 7179.
Martin, B. A., Labuda, R., Royston, T. J., Oshinski, J. N., Iskandar, B. & Loth, F. 2010 Spinal subarachnoid space pressure measurements in an in vitro spinal stenosis model: implications on syringomyelia theories. Trans. ASME J. Biomech. Engng 132, 111007,1–11.
Pihler-Puzovic, D., Juel, A., Peng, G. G., Lister, J. R. & Heil, M. 2015 Displacement flows under elastic membranes. Part 1: experiments and direct numerical simulations. J. Fluid Mech. 784, 487511.
Rossi, C., Boss, A., Steidle, G., Martirosian, P., Klose, U., Capuani, S., Maraviglia, B., Claussen, C. D. & Schick, F. 2008 Water diffusion anisotropy in white and gray matter of the human spinal cord. J. Magn. Reson. Imag. 27 (3), 476482.
Saffman, P. 1971 On the boundary condition at the surface of a porous medium. Stud. Appl. Maths 50, 93101.
Shaffer, N., Martin, B. & Loth, F. 2011 Cerebrospinal fluid hydrodynamics in type I chiari malformation. Neurological Res. 33 (3), 247260.
Shewchuk, J. R. 1996 Triangle: engineering a 2D quality mesh generator and delaunay triangulator. In Lecture Notes in Computer Science (ed. Lin, M. C. & Manocha, Dinesh), vol. 1148, pp. 203222. Springer, from the First ACM Workshop on Applied Computational Geometry.
Simon, B. R. 1992 Multiphase poroelastic finite element models for soft tissue structure. Appl. Mech. Rev. 45 (6), 191218.
Smillie, A., Sobey, I. & Molnar, Z. 2005 A hydroelastic model of hydrocephalus. J. Fluid Mech. 539, 417443.
Stockman, H. W. 2006 Effect of anatomical fine structure on the flow of cerebrospinal fluid in the spinal subarachnoid space. Trans. ASME J. Biomech. Engng 128, 106114.
Støverud, K. H., Alnæs, M., Langtangen, H. P., Haughton, V. & Mardal, K.-A.2015 Poro-elastic modeling of syringomyelia–a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput. Meth. Biomech. Biomed. Engng, pp. 1–13.
Tully, B. & Ventikos, Y. 2011 Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid Mech. 667, 188215.
van de Vosse, F. N. & Stergiopulos, N. 2011 Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43 (1), 467499.
Yiallourou, T. I., Kröger, J. R., Stergiopulos, N., Maintz, D., Martin, B. A. & Bunck, A. C. 2015 Quantitative comparison of 4D MRI flow measurements to 3D computational fluid dynamics simulation of cerebrospinal fluid movement in the spinal subarachnoid space. PLoS ONE 7, e52284.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

A poroelastic fluid–structure interaction model of syringomyelia

  • Matthias Heil (a1) and Christopher D. Bertram (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.