Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-04-30T23:10:53.781Z Has data issue: false hasContentIssue false

Power synchronisations determine the hovering flight efficiency of passively pitching flapping wings

Published online by Cambridge University Press:  06 November 2023

Qiuxiang Huang
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
Shantanu S. Bhat
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
Eng Chow Yeo
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
John Young
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
Joseph C.S. Lai
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
Fang-Bao Tian*
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
Sridhar Ravi
Affiliation:
School of Engineering and Information Technology, University of New South Wales Canberra, ACT 2600, Australia
*
Email address for correspondence: f.tian@adfa.edu.au

Abstract

The power exchange between fluid and structure plays a significant role in the force production and flight efficiency of flapping wings in insects and artificial flyers. This work numerically investigates the performance of flapping wings by using a high-fidelity fluid–structure interaction solver. Simulations are conducted by varying the hinge flexibility (measured by the Cauchy number, $Ch$, i.e. the ratio between aerodynamic and torsional elastic forces) and the wing shape (quantified by the radius of the first moment of area, $\bar {r}_1$). Results show that the lift production is optimal at $0.05 < Ch \leq 0.2$ and larger $\bar {r}_1$ where the minimum angle of attack is around $45^\circ$ at midstroke. The power economy is maximised for wings with lower $\bar {r}_1$ near $Ch=0.2$. Power analysis indicates that the optimal performance measured by the power economy is obtained for those cases where two important power synchronisations occur: anti-synchronisation of the pitching elastic power and the pitching aerodynamic and inertial powers and nearly in-phase synchronisation of the flapping aerodynamic power and the total input power of the system. While analysis of the kinematics for the different wing shapes and hinge stiffnesses reveals that the optimal performance occurs when the timing of pitch and stroke reversals are matched, thus supporting the effective transfer of input power from flapping to passive pitching and into the fluid. These results suggest that careful optimisation between wing shapes and hinge properties can allow insects and robots to exploit the passive dynamics to improve flight performance.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altshuler, D.L., Dickson, W.B., Vance, J.T., Roberts, S.P. & Dickinson, M.H. 2005 Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proc. Natl Acad. Sci. USA 102, 1821318218.CrossRefGoogle ScholarPubMed
Ansari, S.A., Knowles, K. & Zbikowski, R. 2008 a Insectlike flapping wings in the hover. Part 1. Effect of wing kinematics. J. Aircraft 45, 19451954.CrossRefGoogle Scholar
Ansari, S.A., Knowles, K. & Zbikowski, R. 2008 b Insectlike flapping wings in the hover. Part II. Effect of wing geometry. J. Aircraft 45, 19761990.CrossRefGoogle Scholar
Beal, D.N. 2003 Propulsion through wake synchronization using a flapping foil. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Beatus, T. & Cohen, I. 2015 Wing-pitch modulation in maneuvering fruit flies is explained by an interplay between aerodynamics and a torsional spring. Phys. Rev. E 92, 022712.CrossRefGoogle Scholar
Bergou, A.J., Xu, S. & Wang, Z.J. 2007 Passive wing pitch reversal in insect flight. J. Fluid Mech. 591, 321337.CrossRefGoogle Scholar
Berman, G.J. & Wang, Z.J. 2007 Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153168.CrossRefGoogle Scholar
Bhat, S.S. & Thompson, M.C. 2022 Effect of leading-edge curvature on the aerodynamics of insect wings. Intl J. Heat Fluid Flow 93, 108898.CrossRefGoogle Scholar
Bhat, S.S., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C. 2019 a Aspect ratio studies on insect wings. Phys. Fluids 31, 121301.CrossRefGoogle Scholar
Bhat, S.S., Zhao, J., Sheridan, J., Hourigan, K. & Thompson, M.C. 2019 b Evolutionary shape optimisation enhances the lift coefficient of rotating wing geometries. J. Fluid Mech. 868, 369384.CrossRefGoogle Scholar
Birch, J.M. & Dickinson, M.H. 2003 The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J. Expl Biol. 206, 22572272.CrossRefGoogle ScholarPubMed
Bluman, J.E., Sridhar, M.K. & Kang, C.-K. 2018 Chordwise wing flexibility may passively stabilize hovering insects. J. R. Soc. Interface 15, 20180409.CrossRefGoogle ScholarPubMed
Bomphrey, R.J., Nakata, T., Phillips, N. & Walker, S.M. 2017 Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544, 9295.CrossRefGoogle ScholarPubMed
Cai, X., Xue, Y., Kolomenskiy, D., Xu, R. & Liu, H. 2022 Elastic storage enables robustness of flapping wing dynamics. Bioinspir. Biomim. 17 (4), 045003.CrossRefGoogle ScholarPubMed
Chen, Y., Gravish, N., Desbiens, A.L., Malka, R. & Wood, R.J. 2016 Experimental and computational studies of the aerodynamic performance of a flapping and passively rotating insect wing. J. Fluid Mech. 791, 133.CrossRefGoogle Scholar
Combes, S.A. & Daniel, T.L. 2001 Shape, flapping and flexion: wing and fin design for forward flight. J. Expl Biol. 204, 20732085.CrossRefGoogle ScholarPubMed
Dai, H., Luo, H. & Doyle, J.F. 2012 Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473499.CrossRefGoogle Scholar
De, A.K. & Sarkar, S. 2021 Dependence of wake structure on pitching frequency behind a thin panel at $Re=1000$. J. Fluid Mech. 924, A33.CrossRefGoogle Scholar
Deng, H.B., Xu, Y.Q., Chen, D.D., Dai, H., Wu, J. & Tian, F.B. 2013 On numerical modeling of animal swimming and flight. Comput. Mech. 52, 12211242.CrossRefGoogle Scholar
D'Humieres, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple- relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. A 360, 437451.CrossRefGoogle ScholarPubMed
Dickinson, M.H. 1994 The effects of wing rotation on unsteady aerodynamic performance at low Reynolds numbers. J. Expl Biol. 192, 179206.CrossRefGoogle ScholarPubMed
Dickinson, M.H., Lehmann, F.-O. & Sane, S.P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.CrossRefGoogle ScholarPubMed
Dilek, E., Erzincanli, B. & Sahin, M. 2019 The numerical investigation of Lagrangian and Eulerian coherent structures for the near wake structure of a hovering Drosophila. Theor. Comput. Fluid Dyn. 33, 255279.CrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75104.CrossRefGoogle Scholar
Eldredge, J.D., Toomey, J. & Medina, A. 2010 On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94115.CrossRefGoogle Scholar
Ellington, C.P. 1984 a The aerodynamics of hovering insect flight. II. Morphological parameters. Phil. Trans. R. Soc. Lond. B 305, 1740.Google Scholar
Ellington, C.P. 1984 b The aerodynamics of hovering insect flight. VI. Lift and power requirements. Phil. Trans. R. Soc. Lond. B 305, 145181.Google Scholar
Ellington, C.P. & Lighthill, M.J. 1984 The aerodynamics of hovering insect flight. V. A vortex theory. Phil. Trans. R. Soc. Lond. B 305, 115144.Google Scholar
Engels, T., Kolomenskiy, D., Schneider, K. & Sesterhenn, J. 2016 Flusi: a novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization. SIAM J. Sci. Comput. 38, S3S24.CrossRefGoogle Scholar
Engels, T., Schneider, K., Reiss, J. & Farge, M. 2021 A wavelet-adaptive method for multiscale simulation of turbulent flows in flying insects. Commun. Comput. Phys. 30, 11181149.Google Scholar
Ennos, A.R. 1988 The inertial cause of wing rotation in diptera. J. Expl Biol. 140, 161169.CrossRefGoogle Scholar
Farrell Helbling, E. & Wood, R.J. 2018 A review of propulsion, power, and control architectures for insect-scale flapping-wing vehicles. Appl. Mech. Rev. 70, 010801.CrossRefGoogle Scholar
Fry, S.N., Sayaman, R. & Dickinson, M.H. 2005 The aerodynamics of hovering flight in Drosophila. J. Expl Biol. 208, 23032318.CrossRefGoogle ScholarPubMed
Gehrke, A., Richeux, J., Uksul, E. & Mulleners, K. 2022 Aeroelastic characterisation of a bio-inspired flapping membrane wing. Bioinspir. Biomim. 17, 065004.CrossRefGoogle ScholarPubMed
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105, 354366.CrossRefGoogle Scholar
Guo, Z.-L., Zheng, C.-G. & Shi, B.-C. 2002 Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chin. Phys. 11, 366374.Google Scholar
Hu, Z. & Deng, X.Y. 2014 Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mechanica Sin. 30, 787799.CrossRefGoogle Scholar
Huang, Q. 2021 Low Reynolds number turbulent FSI and its applications in biological flows. PhD thesis, University of New South Wales.Google Scholar
Huang, Q., Liu, Z., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2022 Streamline penetration, velocity error and consequences of the feedback immersed boundary method. Phys. Fluids 34, 097101.CrossRefGoogle Scholar
Huang, Q., Mazharmanesh, S., Tian, F.-B., Young, J., Lai, J.C.S. & Ravi, S. 2021 a CFD solver validations for simulating passively pitching tandem wings in hovering flight. In The 24th International Congress on Modelling and Simulation (ed. R.W. Vervoort, A.A. Voinov, J.P. Evans & L. Marshall), pp. 71–77. Modelling and Simulation Society of Australia and New Zealand.Google Scholar
Huang, Q., Tian, F.-B., Young, J. & Lai, J.C.S. 2021 b Transion to chaos in a two-sided collapsible channel flow. J. Fluid Mech. 926, A15.CrossRefGoogle Scholar
Huang, W.-X. & Tian, F.-B. 2019 Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Engrs C 233, 76177636.Google Scholar
Ishihara, D. & Horie, T. 2016 Passive mechanism of pitch recoil in flapping insect wings. Bioinspir. Biomim. 12, 016008.CrossRefGoogle ScholarPubMed
Ishihara, D., Horie, T. & Niho, T. 2014 An experimental and three-dimensional computational study on the aerodynamic contribution to the passive pitching motion of flapping wings in hovering flies. Bioinspir. Biomim. 9, 046009.CrossRefGoogle Scholar
Ishihara, D., Yamashita, Y., Horie, T., Yoshida, S. & Niho, T. 2009 Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. J. Expl Biol. 212, 38823891.CrossRefGoogle ScholarPubMed
Ji, X., Wang, L., Ravi, S., Tian, F.-B., Young, J. & Lai, J.C.S. 2022 Influences of serrated trailing edge on the aerodynamic and aeroacoustic performance of a flapping wing during hovering flight. Phys. Fluids 34, 011902.CrossRefGoogle Scholar
Kang, C.-K. & Shyy, W. 2013 Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. J. R. Soc. Interface 10, 20130361.CrossRefGoogle ScholarPubMed
Keennon, M., Klingebiel, K. & Won, H. 2012 Development of the nano hummingbird: a tailless flapping wing micro air vehicle. In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 588. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Kolomenskiy, D., et al. 2019 The dynamics of passive feathering rotation in hovering flight of bumblebees. J. Fluids Struct. 91, 102628.CrossRefGoogle Scholar
Lallemand, P. & Luo, L.-S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 65466562.CrossRefGoogle ScholarPubMed
Landau, L.D. & Lifshitz, E.M. 2013 Fluid Mechanics: Landau and Lifshitz: Course of Theoretical Physics, vol. 6. Elsevier.Google Scholar
Lei, M. & Li, C. 2020 The aerodynamic performance of passive wing pitch in hovering flight. Phys. Fluids 32, 051902.CrossRefGoogle Scholar
Lentink, D., Jongerius, S.R. & Bradshaw, N.L. 2009 The scalable design of flapping micro-air vehicles inspired by insect flight. In Flying Insects and Robots (ed. D. Floreano, J.C. Zufferey, M.V. Srinivasan & C. Ellington), pp. 185–205. Springer.CrossRefGoogle Scholar
Li, C. & Dong, H. 2016 Three-dimensional wake topology and propulsive performance of low-aspect-ratio pitching-rolling plates. Phys. Fluids 28, 071901.CrossRefGoogle Scholar
Li, C., Dong, H. & Zhao, K. 2018 A balance between aerodynamic and olfactory performance during flight in Drosophila. Nat. Commun. 9, 18.Google ScholarPubMed
Liu, D., Hefler, C., Shyy, W. & Qiu, H. 2022 a Implications of dragonfly's muscle control on flapping kinematics and aerodynamics. Phys. Fluids 34, 081902.CrossRefGoogle Scholar
Liu, Z., Tian, F.-B. & Feng, X. 2022 b An efficient geometry-adaptive mesh refinement framework and its application in the immersed boundary lattice Boltzmann method. Comput. Meth. Appl. Mech. Engng 392, 114662.CrossRefGoogle Scholar
Luo, G. & Sun, M. 2005 The effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mechanica Sin. 21, 531541.CrossRefGoogle Scholar
Luo, L.-S., Liao, W., Chen, X., Peng, Y. & Zhang, W. 2011 Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E 83, 124.CrossRefGoogle ScholarPubMed
Ma, J., Wang, Z., Young, J., Lai, J.C.S., Sui, Y. & Tian, F.-B. 2020 An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries. J. Comput. Phys. 415, 109487.CrossRefGoogle Scholar
Ma, K.Y., Chirarattananon, P., Fuller, S.B. & Wood, R.J. 2013 Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603607.CrossRefGoogle ScholarPubMed
Maeda, M. & Liu, H. 2013 Ground effect in fruit fly hovering: a three-dimensional computational study. J. Biomech. Sci. Engng 8, 344355.CrossRefGoogle Scholar
Mathai, V., Tzezana, G.A., Das, A. & Breuer, K.S. 2022 Fluid–structure interactions of energy-harvesting membrane hydrofoils. J. Fluid Mech. 942, R4.CrossRefGoogle Scholar
Mazharmanesh, S., Stallard, J., Medina, A., Fisher, A., Ando, N., Tian, F.-B., Young, J. & Ravi, S. 2021 Performance of passively pitching flapping wings in the presence of vertical inflows. Bioinspir. Biomim. 16, 056003.CrossRefGoogle ScholarPubMed
Medina, A. 2013 The aerodynamics of deforming wings at low Reynolds number. PhD thesis, University of California, Los Angeles.Google Scholar
Meng, X., Liu, Y. & Sun, M. 2017 Aerodynamics of ascending flight in fruit flies. J. Bionic Engng 14, 7587.CrossRefGoogle Scholar
Peng, D.-W. & Milano, M. 2013 Lift generation with optimal elastic pitching for a flapping plate. J. Fluid Mech. 717, R1.CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Sane, S.P. & Dickinson, M.H. 2001 The control of flight force by a flapping wing: lift and drag production. J. Expl Biol. 204, 26072626.CrossRefGoogle ScholarPubMed
Sane, S.P. & Dickinson, M.H. 2002 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Expl Biol. 205, 10871096.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2016 Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover. Phys. Fluids 28, 111901.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 a Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. J. Fluids Struct. 81, 6996.CrossRefGoogle Scholar
Shahzad, A., Tian, F.B., Young, J. & Lai, J.C.S. 2018 b Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios. Phys. Fluids 30, 091902.CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284327.CrossRefGoogle Scholar
Shyy, W., Kang, C.-K., Chirarattananon, P., Ravi, S. & Liu, H. 2016 Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. A 472, 20150712.CrossRefGoogle ScholarPubMed
Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2008 Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.Google Scholar
Somps, C. & Luttges, M. 1985 Dragonfly flight: novel uses of unsteady separated flows. Science 228, 13261329.CrossRefGoogle ScholarPubMed
Spagnolie, S.E., Moret, L., Shelley, M. & Zhang, J. 2010 Surprising behaviors in flapping locomotion with passive pitching. Phys. Fluids 22, 041903.CrossRefGoogle Scholar
Stanford, B., Kurdi, M., Beran, P. & McClung, A. 2012 Shape, structure, and kinematic parameterization of a power-optimal hovering wing. J. Aircraft 49, 16871699.CrossRefGoogle Scholar
Stewart, W.J., Tian, F.B., Akanyeti, O., Walker, C.J. & Liao, J.C. 2016 Refuging rainbow trout selectively exploit flows behind tandem cylinders. J. Expl Biol. 219, 21822191.CrossRefGoogle ScholarPubMed
Sun, M. & Tang, J. 2002 Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Expl Biol. 205, 5570.CrossRefGoogle Scholar
Suzuki, K., Minami, K. & Inamuro, T. 2015 Lift and thrust generation by a butterfly-like flapping wing–body model: immersed boundary–lattice Boltzmann simulations. J. Fluid Mech. 767, 659695.CrossRefGoogle Scholar
Taguchi, M. & Liao, J.C. 2011 Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J. Expl Biol. 214, 14281436.CrossRefGoogle ScholarPubMed
Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.CrossRefGoogle Scholar
Taylor, G.K., Nudds, R.L. & Thomas, A.L.R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.CrossRefGoogle Scholar
Tian, F.-B., Luo, H., Song, J. & Lu, X.-Y. 2013 Force production and asymmetric deformation of a flexible flapping wing in forward flight. J. Fluids Struct. 36, 149161.CrossRefGoogle Scholar
Tian, F.B., Luo, H., Zhu, L., Liao, J.C. & Lu, X.Y. 2011 An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments. J. Comput. Phys. 230, 72667283.CrossRefGoogle ScholarPubMed
Triantafyllou, M.S., Techet, A.H., Zhu, Q., Beal, D.N., Hover, F.S. & Yue, D.K.P. 2002 Vorticity control in fish-like propulsion and maneuvering. Integr. Comp. Biol. 42, 10261031.CrossRefGoogle ScholarPubMed
Van Buren, T., Floryan, D. & Smits, A.J. 2019 Scaling and performance of simultaneously heaving and pitching foils. AIAA J. 57, 36663677.CrossRefGoogle Scholar
Wang, L. & Tian, F.-B. 2020 Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight. J. Fluids Struct. 99, 103165.CrossRefGoogle Scholar
Wang, L., Tian, F.-B. & Liu, H. 2022 Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere. Phys. Fluids 34, 041903.CrossRefGoogle Scholar
Wang, Q., Goosen, J.F.L. & van Keulen, F. 2016 A predictive quasi-steady model of aerodynamic loads on flapping-wings. J. Fluid Mech. 800, 688719.CrossRefGoogle Scholar
Wang, Q., Goosen, J.F.L. & van Keulen, F. 2017 Optimal pitching axis location of flapping wings for efficient hovering flight. Bioinspir. Biomim. 12, 056001.CrossRefGoogle ScholarPubMed
Wang, Z., Du, L., Zhao, J., Thompson, M. & Sun, X. 2020 Flow-induced vibrations of a pitching and plunging airfoil. J. Fluid Mech. 885, A36.CrossRefGoogle Scholar
Wang, Z.J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.CrossRefGoogle Scholar
Wang, Z.J. & Russell, D. 2007 Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys. Rev. Lett. 99, 148101.CrossRefGoogle ScholarPubMed
Whitney, J.P. & Wood, R.J. 2010 Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197220.CrossRefGoogle Scholar
Willmott, A.P & Ellington, C.P. 1997 The mechanics of flight in the hawkmoth Manduca sexta. II. Aerodynamic consequences of kinematic and morphological variation. J. Expl Biol. 200, 27232745.CrossRefGoogle ScholarPubMed
Wu, K., Nowak, J. & Breuer, K.S. 2019 Scaling of the performance of insect-inspired passive-pitching flapping wings. J. R. Soc. Interface 16, 20190609.Google Scholar
Xu, L., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 A novel geometry-adaptive Cartesian grid based immersed boundary–lattice Boltzmann method for fluid–structure interactions at moderate and high Reynolds numbers. J. Comput. Phys. 375, 2256.CrossRefGoogle Scholar
Yin, B. & Luo, H. 2010 Effect of wing inertia on hovering performance of flexible flapping wings. Phys. Fluids 22, 111902.CrossRefGoogle Scholar
Young, J., Walker, S.M., Bomphrey, R.J., Taylor, G.K. & Thomas, A.L.R. 2009 Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 15491552.CrossRefGoogle ScholarPubMed
Yu, D., Mei, R. & Shyy, W. 2002 A multi-block lattice Boltzmann method for viscous fluid flows. Intl J. Numer. Meth. Fluids 39, 99120.CrossRefGoogle Scholar
Zhang, J., Liu, N.-S. & Lu, X.-Y. 2010 Locomotion of a passively flapping flat plate. J. Fluid Mech. 659, 4368.CrossRefGoogle Scholar

Huang et al. Supplementary Movie 1

See "Huang et al. Supplementary Movie Captions"

Download Huang et al. Supplementary Movie 1(Video)
Video 760.3 KB

Huang et al. Supplementary Movie 2

See "Huang et al. Supplementary Movie Captions"

Download Huang et al. Supplementary Movie 2(Video)
Video 615.1 KB
Supplementary material: File

Huang et al. Supplementary Movie Captions

Huang et al. Supplementary Movie Captions
Download Huang et al. Supplementary Movie Captions(File)
File 14.1 KB