Skip to main content
×
Home

Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection

  • QUAN ZHOU (a1), RICHARD J. A. M. STEVENS (a2), KAZUYASU SUGIYAMA (a2) (a3), SIEGFRIED GROSSMANN (a4), DETLEF LOHSE (a2) and KE-QING XIA (a5)...
Abstract

The shapes of the velocity and temperature profiles near the horizontal conducting plates' centre regions in turbulent Rayleigh–Bénard convection are studied numerically and experimentally over the Rayleigh number range 108Ra ≲ 3 × 1011 and the Prandtl number range 0.7 ≲ Pr ≲ 5.4. The results show that both the temperature and velocity profiles agree well with the classical Prandtl–Blasius (PB) laminar boundary-layer profiles, if they are re-sampled in the respective dynamical reference frames that fluctuate with the instantaneous thermal and velocity boundary-layer thicknesses. The study further shows that the PB boundary layer in turbulent thermal convection not only holds in a time-averaged sense, but is most of the time also valid in an instantaneous sense.

Copyright
Corresponding author
Email address for correspondence: kxia@phy.cuhk.edu.hk
References
Hide All
Ahlers G., Brown E., Fontenele Araujo F., Funfschilling D., Grossmann S. & Lohse D. 2006 Non-Oberbeck–Boussinesq effects in strongly turbulent Rayleigh–Bénard convection. J. Fluid Mech. 569, 409445.
Ahlers G., Calzavarini E., Fontenele Araujo F., Funfschilling D., Grossmann S., Lohse D. & Sugiyama K. 2008 Non-Oberbeck–Boussinesq effects in turbulent thermal convection in ethane close to the critical point. Phys. Rev. E 77, 046302.
Ahlers G., Fontenele Araujo F., Funfschilling D., Grossmann S. & Lohse D. 2007 Non-Oberbeck–Boussinesq effects in gaseous Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 054501.
Ahlers G., Grossmann S. & Lohse D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Castaing B., Gunaratne G., Heslot F., Kadanoff L., Libchaber A., Thomae S., Wu X.-Z., Zaleski S. & Zanetti G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.
Ching E. S. C. 1997 Heat flux and shear rate in turbulent convection. Phys. Rev. E 55, 11891192.
Dubrulle B. 2001 Logarithmic corrections to scaling in turbulent thermal convection. Eur. Phys. J. B 21, 295304.
Dubrulle B. 2002 Scaling in large Prandtl number turbulent thermal convection. Eur. Phys. J. B 28, 361367.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86, 33163319.
Grossmann S. & Lohse D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.
Grossmann S. & Lohse D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16, 44624472.
Lohse D. & Xia K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.
Malkus M. V. R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196212.
du Puits R., Resagk C. & Thess A. 2007 Mean velocity profile in confined turbulent convection. Phys. Rev. Lett. 99, 234504.
Qiu X.-L. & Xia K.-Q. 1998 Viscous boundary layers at the sidewall of a convection cell. Phys. Rev. E 58, 486491.
Schlichting H. & Gersten K. 2004 Boundary Layer Theory, 8th edn. Springer.
Shishkina O. & Thess A. 2009 Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 633, 449460.
Shraiman B. I. & Siggia E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42, 36503653.
Siggia E. D. 1994 High-Rayleigh-number convection. Annu. Rev. Fluid Mech. 26, 137168.
Stevens R. J. A. M., Verzicco R. & Lohse D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 493507.
Sugiyama K., Calzavarini E., Grossmann S. & Lohse D. 2009 Flow organization in non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.
Sugiyama K., Ni R., Stevens R. J. A. M., Chan T.-S., Zhou S.-Q., Xi H.-D., Sun C., Grossmann S., Xia K.-Q. & Lohse D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105, 034503.
Sun C., Cheung Y.-H. & Xia K.-Q. 2008 Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 605, 79113.
Villermaux E. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys. Rev. Lett. 75, 46184621.
Xi H.-D., Zhou S.-Q., Zhou Q., Chan T.-S. & Xia K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.
Xia K.-Q., Sun C. & Zhou S.-Q. 2003 Particle image velocimetry measurements of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.
Zhou Q., Xi H.-D., Zhou S.-Q., Sun C. & Xia K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.
Zhou Q. & Xia K.-Q. 2010 Measured instantaneous viscous boundary layer in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 104301.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 187 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.