Althaus, W., Krause, E., Hofhaus, J. & Weimer, M.
1994
Vortex breakdown: transition between bubble- and spiral-type breakdown. Meccanica
29 (4), 373–382.

Barkley, D.
2006
Linear analysis of the cylinder wake mean flow. Europhys. Lett.
75 (5), 750.

Benjamin, T. B.
1962
Theory of the vortex breakdown phenomenon. J. Fluid Mech.
14 (4), 593–629.

Bewley, T. R. & Liu, S.
1998
Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech.
365, 305–349.

Bewley, T. R., Moin, P. & Temam, R.
2001
DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech.
447, 179–225.

Boujo, E. & Gallaire, F.
2014
Controlled reattachment in separated flows: a variational approach to recirculation length reduction. J. Fluid Mech.
742, 618–635.

Camarri, S. & Iollo, A.
2010
Feedback control of the vortex-shedding instability based on sensitivity analysis. Phys. Fluids
22, 094102.

Carini, M., Airiau, C., Debien, A. & Pralits, J. O.
2017
Global stability and control of the confined turbulent flow past a thick flat plate. Phys. Fluids
29 (2), 024102.

Delbende, I., Chomaz, J.-C. & Huerre, P.
1998
Absolute/convective instabilities in the batchelor vortex: a numerical study of the linear impulse response. J. Fluid Mech.
355, 229–254.

Escudier, M. P. & Zehnder, N.
1982
Vortex-flow regimes. J. Fluid Mech.
115, 105–121.

European, Commissions2017 European policy: Climate strategies and targets.

Favrel, A., Müller, A., Landry, C., Yamamoto, K. & Avellan, F.
2015
Study of the vortex induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry. Exp. Fluids
56 (215), 1–15.

Gallaire, F. & Chomaz, J.-C.
2003
Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech.
494, 223–253.

Gallaire, F., Chomaz, J.-C. & Huerre, P.
2004
Closed-loop control of vortex breakdown: a model study. J. Fluid Mech.
511, 67–93.

Gallaire, F., Ruith, M., Meiburg, E., Chomaz, J.-M. & Huerre, P.
2006
Spiral vortex breakdown as a global mode. J. Fluid Mech.
549, 71–80.

Giannetti, F. & Luchini, P.
2007
Structural sensitivity of the first instability of the cylinder wake. J. Fluid Mech.
581, 167–197.

Goit, J. P. & Meyers, J.
2015
Optimal control of energy extraction in wind-farm boundary layers. J. Fluid Mech.
768, 5–50.

Grabowski, W. J. & Berger, S. A.
1976
Solutions of the Navier–Stokes equations for vortex breakdown. J. Fluid Mech.
75 (3), 525–544.

Grimble, T. A., Agarwal, A. & Juniper, M. P.
2017
Local linear stability analysis of cyclone separators. J. Fluid Mech.
816, 507–538.

Gunzburger, M. D.
1999
Sensitivities, adjoints and flow optimization. Intl J. Numer. Mech. Fluids
31, 53–78.

Gursul, I., Wang, Z. & Vardaki, E.
2007
Review of flow control mechanisms of leading-edge vortices. Prog. Aerosp. Sci.
43 (7), 246–270.

Hall, M. G.
1972
Vortex breakdown. Annu. Rev. Fluid Mech.
4, 195–218.

Hecht, F.
2012
New development in freefem++. J. Numer. Math.
20 (3–4), 251–265.

Huerre, P. & Monkewitz, P. A.
1990
Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech.
22, 473–537.

Joslin, R., Gunzburger, M., Nicolaides, R., Erlebacher, G. & Hussaini, M.
1997
Self-contained automated methodology for optimal flow control. AIAA J.
35 (5), 816–824.

Khorrami, M. R.
1991
A Chebyshev spectral collocation method using a staggered grid for the stability of cylindrical flows. Intl J. Numer. Meth. Fluids
12, 825–833.

Kim, J. & Bewley, T. R.
2007
A linear systems approach to flow control. Annu. Rev. Fluid Mech.
39, 383–417.

Lacis, U., Brosse, N., Ingremeau, F., Mazzino, A., Lundell, F., Kellay, H. & Bagheri, S.
2014
Passive appendages generate drift through symmetry breaking. Nat. Commun.
5 (5310), 1–9.

Lambourne, N. C. & Bryer, D. W.
1962
The bursting of leading-edge vortices – some observations and discussion of the phenomenon. Aero. Res. Counc.
3292, 1–35.

Leibovich, S.
1978
The structure of the vortex breakdown. Annu. Rev. Fluid Mech.
10, 221–246.

Leibovich, S. & Stewartson, K.
1983
A sufficient condition for the instability of columnar vortices. J. Fluid Mech.
126, 335–356.

Lions, J. L.
1971
Optimal Control of Systems Governed by Partial Differential Equations. Springer.

Luchini, P. & Bottaro, A.
2014
Adjoint equations in stability analysis. Annu. Rev. Fluid Mech.
46, 493–517.

Mantič-Lugo, V., Arratia, C. & Gallaire, F.
2014
Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett.
113, 084501.

Marquet, O., Sipp, D. & Jacquin, L.
2008
Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech.
615, 221–252.

Marston, J. B., Chini, G. P. & Tobias, S. M.
2016
Generalized quasilinear approximation: application to zonal jets. Phys. Rev. Lett.
116, 214501.

Maurel, A., Pagneux, V. & Wesfreid, J. E.
1995
Mean-flow correction as non-linear saturation mechanism. Europhys. Lett.
32 (3), 217.

Meliga, P. & Gallaire, F.
2011
Control of axisymmetric vortex breakdown in a constricted pipe: nonlinear steady states and weakly nonlinear asymptotic expansions. Phys. Fluids
23 (8), 084102.

Meliga, P., Gallaire, F. & Chomaz, J.-M.
2012a
A weakly nonlinear mechanism for mode selection in swirling jets. J. Fluid Mech.
699, 216–262.

Meliga, P., Pujals, G. & Serre, E.
2012b
Sensitivity of 2-d turbulent flow past a d-shaped cylinder using global stability. Phys. Fluids
24 (6), 061701.

Mettot, C., Sipp, D. & Bézard, H.
2014
Quasi-laminar stability and sensitivity analyses for turbulent flows prediction of low-frequency unsteadyness and passive control. Phys. Fluids
26 (4), 045112.

Nishi, M. & Liu, S.
2013
An outlook on the draft tube surge study. Intl J. Fluid Mach. Syst.
6, 33–48.

Oberleithner, K., Sthr, M., Im, S. H., Arndt, C. M. & Steinberg, A. M.
2015
Formation and flame-induced suppression of the precessing vortex core in a swirl combustor: experiments and linear stability analysis. Combust. Flame
162 (8), 3100–3114.

Paredes, P., Terhaar, S., Oberleithner, K., Theofilis, V. & Passchereit, C. O.
2015
Global and local hydrodynamic stability analysis as a tool for combustor dynamics modeling. Trans. ASME J. Engng Gas Turbines Power
138 (2), 021504–021504–7.

Pasche, S.2018 Dynamics and optimal control of self-sustained instabilities in laminar and turbulent swirling flows: application to the part load vortex rope in Francis turbines. PhD thesis, École Polytechnique Fédérale de Lausanne.

Pasche, S., Avellan, F. & Gallaire, F.
2017
Part load vortex rope as a global unstable mode. Trans. ASME J. Fluids Engng
139, 051102–11.

Paschereit, C. O., Flohr, P. & Gutmark, E. J.
2002
Combustion control by vortex breakdown stabilization. J. Turbomach.
128, 679–688.

Passaggia, P-Y. & Ehrenstein, U.
2013
Adjoint based optimization and control of a separated boundary-layer flow. Eur. J. Mech. (B/Fluids)
41, 169–177.

Polak, E.
1997
Optimization Algorithms and Consistent Approximations. Springer.

Polak, E. & Ribiere, G.
1969
Note sur la convergence de méthodes de directions conjuguées. ESAIM: Mathematical Modelling and Numerical Analysis – Modélisation Mathématique et Analyse Numérique
3 (R1), 35–43.

Qadri, U. A., Mistry, D. & Juniper, M. P.
2013
Structural sensitivity of spiral vortex breakdown. J. Fluid Mech.
720, 558–581.

Rheingans, W. J.
1940
Power swings in hydroelectric power plants. Trans. ASME
62 (174), 171–184.

Ruith, M. R., Chen, P., Meiburg, E. & Maxworthy, T.
2003
Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech.
486, 331–378.

Rusak, Z., Granata, J. & Wang, S.
2015
An active feedback flow control theory of the axisymmetric vortex breakdown process. J. Fluid Mech.
774, 488–528.

Sarpkaya, T.
1971
On stationary and travelling vortex breakdowns. J. Fluid Mech.
45 (3), 545–559.

Sipp, D. & Lebedev, A.
2007
Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech.
593, 333–358.

Spall, R. E., Gatski, T. B. & Ash, R. L.
1990
The structure and dynamics of bubble-type vortex breakdown. Proc. R. Soc. Lond. A
429 (1877), 613–637.

Squire, H. B.
1960
Analysis of the Vortex Breakdown Phenomenon. Imperial College of Science and Technology, Aeronautics Department.

Strykowski, P. J. & Sreenivasan, K. R.
1990
On the formation and suppression of vortex shedding at low Reynolds numbers. J. Fluid Mech.
218, 71–107.

Susan-Resiga, R., Muntean, S., Hasmatuchi, V., Anton, I. & Avellan, F.
2010
Analysis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine. J. Fluids Engng
132 (5), 051102.

Syred, N.
2006
A review of oscillation mechanisms and the role of the precessing vortex core (pvc) in swirl combustion systems. Prog. Energy Combust. Sci.
32 (2), 93–161.

Tammisola, O. & Juniper, M. P.
2016
Coherent structures in a swirl injector at *Re* = 4800 by nonlinear simulations and linear global modes. J. Fluid Mech.
792, 620–657.

Vyazmina, E., Nichols, J. W., Chomaz, J.-M. & Schmid, P. J.
2009
The bifurcation structure of viscous steady axisymmetric vortex breakdown with open lateral boundaries. Phys. Fluids
21 (7), 074107.

Wang, S. & Rusak, Z.
1997
The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech.
340, 177–223.