Skip to main content
×
Home
    • Aa
    • Aa

Preferred interparticle spacings in trains of particles in inertial microchannel flows

  • Soroush Kahkeshani (a1), Hamed Haddadi (a1) and Dino Di Carlo (a1)
Abstract

Suspended particles migrate towards inertial focusing positions close to walls and align into trains in finite inertia conduit flow. The relative contribution of inertial and viscous forces at the particle length scale, defined by the particle Reynolds number ( $\mathit{Re}_{p}$ ), is a key parameter, where $\mathit{Re}_{p}=\langle \dot{{\it\gamma}}\rangle D^{2}/{\it\nu}$ depends on the mean shear rate $\langle \dot{{\it\gamma}}\rangle$ , particle diameter $D$ and fluid kinematic viscosity  ${\it\nu}$ . Controlling the location of inertial focusing positions and the interparticle distance is critical in applications such as flow cytometry, imaging and cell entrapment in droplets. By using experimental observations in rectangular microchannels and lattice Boltzmann numerical simulations of dilute suspension flow, the spacing between particles aligned in trains is measured. From the modes of the probability density function of interparticle spacing, preferred spacings at $5D$ and $2.5D$ are observed. At lower $\mathit{Re}_{p}$ , the preferred spacing forms around $5D$ , and with increasing $\mathit{Re}_{p}$ the spacing at $2.5D$ becomes more pronounced. With increasing concentration of the suspension the spacing is influenced by particle crowding effects until stable trains are no longer observed.

Copyright
Corresponding author
Email address for correspondence: dicarlo@seas.ucla.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. K. Aidun  & J. R. Clausen 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.

H. Amini , W. Lee  & D. Di Carlo 2014 Inertial microfluidic physics. Lab on a Chip 14, 27392761.

B. Chun  & A. J. C. Ladd 2006 Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.

J. R. Clausen  & C. K. Aidun 2009 Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Intl J. Multiphase Flow 35, 307311.

D. Dendukuri , S. S. Gu , D. C. Pregibon , T. A. Hatton  & P. S. Doyle 2007 Stop-flow lithography in a microfluidic device. Lab on a Chip 7, 818828.

D. Di Carlo 2009 Inertial microfluidics. Lab on a Chip 9, 30383046.

D. Di Carlo , J. F. Edd , K. J. Humphry , H. A. Stone  & M. Toner 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102, 094503.

D. Di Carlo , D. Irimia , R. G. Tompkins  & M. Toner 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104, 1889218897.

D. C. Duffy , C. J. Mcdonald , O. J. A. Schueller  & G. M. Whitesides 1998 Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 49744984.

J. F. Edd , D. Di Carlo , K. J. Humphry , S. Koster , D. Irimia , D. A. Weitz  & M. Toner 2008 Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip 8, 12621264.

H. Haddadi  & J. F. Morris 2015 Topology of pair-sphere trajectories in finite inertia suspension shear flow and its effects on microstructure and rheology. Phys. Fluids 27, 043302.

K. J. Humphry , P. M. Kulkarni , D. A. Weitz , J. F. Morris  & H. A. Stone 2010 Axial and lateral particle ordering in finite Reynolds number channel flows. Phys. Fluids 22, 081703.

S. C. Hur , H. T. K. Tse  & D. Di Carlo 2010 Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab on a Chip 10, 274280.

W. Lee , H. Amini , H. A. Stone  & D. Di Carlo 2010 Dynamic self-assembly and control of microfluidic particle crystals. Proc. Natl Acad. Sci. USA 107, 2241322418.

J. Martel  & M. Toner 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16, 371396.

J. P. Matas , V. Glezer , E. Guazzelli  & J. F. Morris 2004 Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids 16, 41924195.

G. Segre  & A. Silberberg 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209210.

W. E. Uspal  & P. S. Doyle 2012 Collective dynamics of small clusters of particles flowing in a quasi-two-dimensional microchannel. Soft Matt. 8, 1067610686.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 225 *
Loading metrics...

Abstract views

Total abstract views: 519 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.