Skip to main content
×
Home

Preferred interparticle spacings in trains of particles in inertial microchannel flows

  • Soroush Kahkeshani (a1), Hamed Haddadi (a1) and Dino Di Carlo (a1)
Abstract

Suspended particles migrate towards inertial focusing positions close to walls and align into trains in finite inertia conduit flow. The relative contribution of inertial and viscous forces at the particle length scale, defined by the particle Reynolds number ( $\mathit{Re}_{p}$ ), is a key parameter, where $\mathit{Re}_{p}=\langle \dot{{\it\gamma}}\rangle D^{2}/{\it\nu}$ depends on the mean shear rate $\langle \dot{{\it\gamma}}\rangle$ , particle diameter $D$ and fluid kinematic viscosity  ${\it\nu}$ . Controlling the location of inertial focusing positions and the interparticle distance is critical in applications such as flow cytometry, imaging and cell entrapment in droplets. By using experimental observations in rectangular microchannels and lattice Boltzmann numerical simulations of dilute suspension flow, the spacing between particles aligned in trains is measured. From the modes of the probability density function of interparticle spacing, preferred spacings at $5D$ and $2.5D$ are observed. At lower $\mathit{Re}_{p}$ , the preferred spacing forms around $5D$ , and with increasing $\mathit{Re}_{p}$ the spacing at $2.5D$ becomes more pronounced. With increasing concentration of the suspension the spacing is influenced by particle crowding effects until stable trains are no longer observed.

Copyright
Corresponding author
Email address for correspondence: dicarlo@seas.ucla.edu
References
Hide All
Aidun C. K. & Clausen J. R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.
Aidun C. K., Lu Y. & Ding E. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.
Amini H., Lee W. & Di Carlo D. 2014 Inertial microfluidic physics. Lab on a Chip 14, 27392761.
Asmolov E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.
Chun B. & Ladd A. J. C. 2006 Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.
Clausen J. R. & Aidun C. K. 2009 Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Intl J. Multiphase Flow 35, 307311.
Dendukuri D., Gu S. S., Pregibon D. C., Hatton T. A. & Doyle P. S. 2007 Stop-flow lithography in a microfluidic device. Lab on a Chip 7, 818828.
Di Carlo D. 2009 Inertial microfluidics. Lab on a Chip 9, 30383046.
Di Carlo D., Edd J. F., Humphry K. J., Stone H. A. & Toner M. 2009 Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102, 094503.
Di Carlo D., Irimia D., Tompkins R. G. & Toner M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104, 1889218897.
Duffy D. C., Mcdonald C. J., Schueller O. J. A. & Whitesides G. M. 1998 Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem. 70, 49744984.
Edd J. F., Di Carlo D., Humphry K. J., Koster S., Irimia D., Weitz D. A. & Toner M. 2008 Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab on a Chip 8, 12621264.
Haddadi H. & Morris J. F. 2014 Microstructure and rheology of finite inertia neutrally buoyant suspensions. J. Fluid Mech. 749, 431459.
Haddadi H. & Morris J. F. 2015 Topology of pair-sphere trajectories in finite inertia suspension shear flow and its effects on microstructure and rheology. Phys. Fluids 27, 043302.
Ho B. P. & Leal L. G. 1976 Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76, 783799.
Hood K., Lee S. & Roper M. 2015 Inertial migration of a rigid sphere in three-dimensional Poiseuille flow. J. Fluid Mech. 765, 452479.
Humphry K. J., Kulkarni P. M., Weitz D. A., Morris J. F. & Stone H. A. 2010 Axial and lateral particle ordering in finite Reynolds number channel flows. Phys. Fluids 22, 081703.
Hur S. C., Tse H. T. K. & Di Carlo D. 2010 Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab on a Chip 10, 274280.
Ladd A. J. C. 1994a Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 271, 285309.
Ladd A. J. C. 1994b Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.
Lee W., Amini H., Stone H. A. & Di Carlo D. 2010 Dynamic self-assembly and control of microfluidic particle crystals. Proc. Natl Acad. Sci. USA 107, 2241322418.
Martel J. & Toner M. 2014 Inertial focusing in microfluidics. Annu. Rev. Biomed. Engng 16, 371396.
Matas J. P., Glezer V., Guazzelli E. & Morris J. F. 2004 Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids 16, 41924195.
Nguyen N. Q. & Ladd A. J. C. 2002 Lubrication corrections for lattice-Boltzmann simulations of particle suspensions. Phys. Rev. E 66, 046708.
Segre G. & Silberberg A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209210.
Uspal W. E. & Doyle P. S. 2012 Collective dynamics of small clusters of particles flowing in a quasi-two-dimensional microchannel. Soft Matt. 8, 1067610686.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 289 *
Loading metrics...

Abstract views

Total abstract views: 811 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.