Skip to main content Accessibility help
×
Home

Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

  • H. Ding (a1) (a2), E. Q. Li (a3) (a4), F. H. Zhang (a3) (a5), Y. Sui (a6), P. D. M. Spelt (a6) (a7) and S. T. Thoroddsen (a4)...

Abstract

A new regime of droplet ejection following the slow deposition of drops onto a near-complete wetting solid substrate is identified in experiments and direct numerical simulations; a coalescence cascade subsequent to pinch-off is also observed for the first time. Results of numerical simulations indicate that the propagation of capillary waves that lead to pinch-off is closely related to the self-similar behaviour observed in the inviscid recoil of droplets, and that motions of the crests and troughs of capillary waves along the interface do not depend on the wettability and surface tension (or Ohnesorge number). The simulations also show that a self-similar theory for universal pinch-off can be used for the time evolution of the pinching neck. However, although good agreement is also found with the double-cone shape of the pinching neck for droplet ejection in drop deposition on a pool of the same liquid, substantial deviations are observed in such a comparison for droplet ejection in rapid drop spreading (including the newly identified regime). This deviation is shown to result from interference by the solid substrate, a rapid downwards acceleration of the top of the drop surface and the rapid spreading process. The experiments also confirm non-monotonic spreading behaviour observed previously only in numerical simulations, and suggest substantial inertial effects on the relation between an apparent contact angle and the dimensionless contact-line speed.

Copyright

Corresponding author

Email address for correspondence: peter.spelt@univ-lyon1.fr

References

Hide All
1. Biance, A.-L., Clanet, C. & Queré, D. 2004 First steps in the spreading of a liquid droplet. Phys. Rev. E 69, 016301.
2. Billingham, J. 1999 Surface-tension-driven flow in fat fluid wedges and cones. J. Fluid Mech. 397, 4571.
3. Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nature Phys. 2, 254257.
4. Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.
5. Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169.
6. Day, R. F., Hinch, E. J. & Lister, J. R. 1998 Self-similar capillary pinch off of an inviscid fluid. Phys. Rev. Lett. 80, 704707.
7. Ding, H. & Spelt, P. D. M. 2007a Inertial effects in droplet spreading: a comparison between diffuse interface and level-set simulations. J. Fluid Mech. 576, 287296.
8. Ding, H. & Spelt, P. D. M. 2007b Wetting condition in diffuse interface simulation of contact line motion. Phys. Rev. E 75, 046708.
9. Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.
10. Ding, H. & Spelt, P. D. M. 2008 Onset of motion of a 3D droplet on a wall in shear flow at moderate Reynolds numbers. J. Fluid Mech. 599, 341362.
11. Ding, H., Gilani, M. N. H. & Spelt, P. D. M. 2010 Sliding, pinch off and detachment of a droplet on a wall in shear flow. J. Fluid Mech. 644, 217244.
12. Doshi, P., Cohen, I., Zhang, W. W., Siegel, M., Howell, P., Basaran, O. A. & Nagel, S. R. 2003 Persistence of memory in drop breakup: the breakdown of universality. Science 302, 11851188.
13. Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.
14. Eggers, J. & Stone, H. A. 2004 Characteristic lengths at moving contact lines for a perfectly wetting fluid: the influence of speed on the dynamic contact angle. J. Fluid Mech. 505, 309321.
15. de Gennes, P. G. 1985 Wetting: Statistics and dynamics. Rev. Mod. Phys. 57, 827863.
16. Gilet, T., Mulleners, K., Lecomte, J. P., Vandewalle, N. & Dorbolo, S. 2007 Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303.
17. Goriely, A. & McMillen, T. 2002 Shape of a cracking whip. Phys. Rev. Lett. 88, 244301.
18. Hocking, L. M. 1983 The spreading of a thin drop by gravity and capillarity. Q. J. Mech. Appl. Maths 36, 5569.
19. Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modelling. J. Comput. Phys. 155, 96127.
20. Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 57.
21. Jang, E. Y., Seo, D. K., Kim, T., Kang, T. J. & Kim, Y. H. 2010 Electrical resistance variation of carbon-nanotube networks due to surface modification of glass substrate. Phys. Status Solidi A 1.
22. Keller, J. B. & Miksis, M. J. 1983 Surface tension driven flows. SIAM J. Appl. Maths 43, 268277.
23. King, A. C. 1991 Moving contact lines in slender fuid wedges. Q. J. Mech. Appl. Maths 44, 173192.
24. Lawrie, J. B. 1990 Surface-tension-driven flow in a wedge. Q. J. Mech. Appl. Maths 43, 251273.
25. Lister, J. R. & Stone, H. A. 1999 Capillary breakup of a viscous thread surrounded by another viscous fluid. Phys. Fluids 10, 27582764.
26. MacNeice, P., Olson, K. M., Mobarry, C., deFainchtein, R. & Packer, C. 2000 PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. 126, 330354.
27. Manasseh, R., Riboux, G. & Risso, F. 2008 Sound generation on bubble coalescence following detachment. Intl J. Multiphase Flow 34, 938949.
28. Marsh, J. A., Garoff, S. & Dussan, V. E. B. 1993 Dynamic contact angles and hydrodynamics near a moving contact line. Phys. Rev. Lett. 70, 27782781.
29. Rayleigh, L. 1879 On the capillary phenomena of jets. Proc. R. Soc. 29, 7197.
30. Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M. A., Richard, D., Clanet, C. & Quéré, 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484, 6983.
31. Rio, E., Daerr, A., Andreotti, B. & Limat, L. 2005 Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys. Rev. Lett. 94, 024503.
32. Rioboo, R., Adao, M. H., Voué, M. & De Coninck, J. 2006 Experimental evidence of liquid drop breakup in complete wetting experiments. J. Mater. Sci. 41, 50685080.
33. Roux, D. C. D. & Cooper-White, J. J. 2004 Dynamics of water spreading on a glass surface. J. Colloid Interface Sci. 277, 424436.
34. Sierou, A. & Lister, J. R. 2004 Self-similar recoil of inviscid drops. Phys. Fluids 16, 13791394.
35. Shaw, S. J. & Spelt, P. D. M. 2010 Shock emission from collapsing gas bubbles. J. Fluid Mech. 646, 363373.
36. Spelt, P. D. M. 2005 A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207, 389404.
37. Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12, 14731483.
38. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.
39. Thoroddsen, S. T., Etoh, T. G. & Takehara, K. 2007a Microjetting from wave focusing on oscillating drops. Phys. Fluids 19, 152101.
40. Thoroddsen, S. T., Qian, B., Etoh, T. G. & Takehara, K. 2007b The initial coalescence of miscible drops. Phys. Fluids 19, 072110.
41. Thoroddsen, S. T. & Takehara, K. 2000 The coalescence cascade of a drop. Phys. Fluids 12, 12651267.
42. Wheeler, D., Warren, J. A. & Boettinger, W. J. 2010 Modelling the early stages of reactive wetting. Phys. Rev. E 82, 051601.
43. Yarin, A. L. 2006 Droplet impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.
44. Yiantsios, S. G. & Davis, R. H. 1990 On the buoyancy-driven motion of a drop towards a rigid or a deformable surface. J. Fluid Mech. 217, 547573.
45. Zhang, F. H. & Thoroddsen, S. T. 2008 Satellite generation during bubble coalescence. Phys. Fluids 20, 022104.
46. Zhang, F. H., Li, E. Q. & Thoroddsen, S. T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 102, 104502.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Ding et al. supplementary movie
Movie 1. Typical sequence of a second-stage pinchoff for a drop of water and glycerin mixture. Oh=0.009, We=0.026 and a static angle of 13 degrees.

 Video (3.1 MB)
3.1 MB
VIDEO
Movies

Ding et al. supplementary movie
Movie 1. Typical sequence of a second-stage pinchoff for a drop of water and glycerin mixture. Oh=0.009, We=0.026 and a static angle of 13 degrees.

 Video (427 KB)
427 KB
VIDEO
Movies

Ding et al. supplementary movie
Movie 2. Six-stage coalescence cascade after 1st-stage pinchoff for Oh=0.006, We=0.033 and a static angle of 12+/- 2 degrees.

 Video (45.5 MB)
45.5 MB
VIDEO
Movies

Ding et al. supplementary movie
Movie 2. Six-stage coalescence cascade after 1st-stage pinchoff for Oh=0.006, We=0.033 and a static angle of 12+/- 2 degrees.

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Ding et al. supplementary movie
Movie 3. Propagation of the capillary wave from the contact line (right end), in terms of the radial coordinate at the drop surface as a function of the polar angle, as defined in figure 4. Oh=0.008, We=0.016, contact angle is 30 degrees.

 Video (17.2 MB)
17.2 MB
VIDEO
Movies

Ding et al. supplementary movie
Movie 3. Propagation of the capillary wave from the contact line (right end), in terms of the radial coordinate at the drop surface as a function of the polar angle, as defined in figure 4. Oh=0.008, We=0.016, contact angle is 30 degrees.

 Video (1.5 MB)
1.5 MB

Propagation of capillary waves and ejection of small droplets in rapid droplet spreading

  • H. Ding (a1) (a2), E. Q. Li (a3) (a4), F. H. Zhang (a3) (a5), Y. Sui (a6), P. D. M. Spelt (a6) (a7) and S. T. Thoroddsen (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed