Skip to main content Accessibility help

Propagation of tides along a river with a sloping bed

  • K. Kästner (a1), A. J. F. Hoitink (a1), P. J. J. F. Torfs (a1), E. Deleersnijder (a2) (a3) and N. S. Ningsih (a4)...


Conceptually, tidal rivers are seen as narrow channels along which the cross-section geometry remains constant and the bed is horizontal. As tidal waves propagate along such a channel, they decrease exponentially in height. The more rapid the decrease, the stronger the river flow. Near the coast, the tidally averaged width and depth change little throughout the year, even if the river discharge varies strongly between the seasons. However, further upstream, the water depth varies considerably with the river discharge. Recent observations from the Kapuas River, Indonesia, show that the water surface forms a backwater profile when the river flow is low. In this case, the depth converges, i.e. it gradually decreases between the river mouth and the point where the bed reaches sea level. This effect distinctly influences how tidal waves propagate up river so that their wave height does not decrease exponentially any more. We present a theoretical analysis of this phenomenon, which reveals several so far overlooked aspects of river tides. These aspects are particularly relevant to low river flow. Along the downstream part of the tidal river, depth convergence counteracts frictional damping so that the tidal range is higher than expected. Along the upstream parts of the tidal river, the low depth increases the damping so that the tide more rapidly attenuates. The point where the bed reaches sea level effectively limits the tidal intrusion, which carries over to the overtide and the subtidal water level set-up.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Propagation of tides along a river with a sloping bed
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Propagation of tides along a river with a sloping bed
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Propagation of tides along a river with a sloping bed
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence:


Hide All
Alebregtse, N. C. & de Swart, H. E. 2016 Effect of river discharge and geometry on tides and net water transport in an estuarine network, an idealized model applied to the Yangtze Estuary. Cont. Shelf Res. 123, 2949.
Bolla Pittaluga, M., Tambroni, N., Canestrelli, A., Slingerland, R., Lanzoni, S. & Seminara, G. 2015 Where river and tide meet: the morphodynamic equilibrium of alluvial estuaries. J. Geophys. Res. 120 (1), 7594.
Buschman, F. A., Hoitink, A. J. F., van der Vegt, M. & Hoekstra, P. 2009 Subtidal water level variation controlled by river flow and tides. Water Resour. Res. 45 (10), 112.
Cai, H., Savenije, H. H. G., Jiang, C., Zhao, L. & Yang, Q. 2016 Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge. Hydrol. Earth Sys. Sci 20 (3), 11771195.
Cai, H., Savenije, H. H. G. & Toffolon, M. 2014 Linking the river to the estuary: influence of river discharge on tidal damping. Hydrol. Earth Sys. Sci. 18 (1), 287304.
Cartwright, D. E. & Tayler, R. J. 1971 New computations of the tide-generating potential. Geophys. J. Intl 23 (1), 4573.
Cunge, J. A., Holly, F. M. & Verwey, A. 1980 Practical Aspects of Computational River Hydraulics, Monographs and Surveys in Water Resources Engineering, vol. 3. Pitman.
Dai, A. & Trenberth, K. E. 2002 Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 3 (6), 660687.
Dalrymple, R. W., Kurcinka, C. E., Jablonski, B. V. J. G., Ichaso, A. A. & Mackay, D. A. 2015 Deciphering the relative importance of fluvial and tidal processes in the fluvial–marine transition. In Developments in Sedimentology, vol. 68, pp. 345. Elsevier.
Doodson, A. T. 1921 The harmonic development of the tide-generating potential. Proc. R. Soc. Lond. A 100 (704), 305329.
Dronkers, J. J. 1964 Tidal Computations in Rivers and Coastal Waters. North-Holland.
Egbert, G. D. & Erofeeva, S. Y. 2002 Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19 (2), 183204.
Foreman, M. G. G. 1996 Manual for Tidal Heights Analysis and Prediction. Canada Institute of Ocean Sciences Pacific Marine Science Report, Institute of Ocean Sciences, Patricia Bay.
Frazier, T. G., Wood, N., Yarnal, B. & Bauer, D. H. 2010 Influence of potential sea level rise on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida. Appl. Geog. 30 (4), 490505.
Friedrichs, C. T. 2010 Barotropic tides in channelized estuaries. In Contemporary Issues in Estuarine Physics (ed. Valle-Levinson, A.), pp. 2761. Cambridge University Press.
Friedrichs, C. T. & Madsen, O. S. 1992 Nonlinear diffusion of the tidal signal in frictionally dominated embayments. J. Geophys. Res. 97 (C4), 56375650.
Garel, E. & Cai, H. 2018 Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary. Estuar. Coast. 41 (7), 19241942.
Godin, G. 1984 The tide in rivers. Intl Hydrogr. Rev. 61 (2), 159170.
Godin, G. 1985 Modification of river tides by the discharge. J. Waterways Port Coast. Ocean Engng 111 (2), 257274.
Godin, G. 1991a Frictional effects in river tides. In Tidal Hydrodynamics, pp. 379402. John Wiley & Sons.
Godin, G. 1991b The analysis of tides and currents. In Tidal Hydrodynamics, pp. 675709. John Wiley & Sons.
Godin, G. 1999 The propagation of tides up rivers with special considerations on the upper Saint Lawrence River. Estuar. Coast. Shelf Sci. 48 (3), 307324.
Godin, G. & Martínez, A. 1994 Numerical experiments to investigate the effects of quadratic friction on the propagation of tides in a channel. Cont. Shelf Res. 14 (7), 723748.
Green, G. 1838 On the motion of waves in a variable canal of small depth and width. Trans. Camb. Phil. Soc. 6, 225230.
Guo, L., van der Wegen, M., Jay, D. A., Matte, P., Wang, Z. B., Roelvink, D. & He, Q. 2015 River-tide dynamics: exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary. J. Geophys. Res. 120 (5), 34993521.
Hoitink, A. J. F. & Jay, D. A. 2016 Tidal river dynamics: implications for deltas. Rev. Geophys. 54 (1), 240272.
Horrevoets, A. C., Savenije, H. H. G., Schuurman, J. N. & Graas, S. 2004 The influence of river discharge on tidal damping in alluvial estuaries. J. Hydrol. 294 (4), 213228.
Ippen, A. T. 1966 Estuary and Coastline Hydrodynamics. McGraw-Hill.
Jay, D. A. 1991 Green’s law revisited: tidal long-wave propagation in channels with strong topography. J. Geophys. Res. 20 (C11), 2058520598.
Jay, D. A. & Flinchem, E. P. 1997 Interaction of fluctuating river flow with a barotropic tide: a demonstration of wavelet tidal analysis methods. J. Geophys. Res. 102 (C3), 57055720.
Jay, D. A., Leffler, K., Diefenderfer, H. L. & Borde, A. B. 2015 Tidal-fluvial and estuarine processes in the lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam. Estuar. Coast. 38 (2), 415433.
Kästner, K., Hoitink, A. J. F., Torfs, P. J. J. F., Vermeulen, B., Ningsih, N. S. & Pramulya, M. 2018 Prerequisites for accurate monitoring of river discharge based on fixed-location velocity measurements. Water Resour. Res. 54 (2), 10581076.
Kästner, K., Hoitink, A. J. F., Vermeulen, B., Geertsema, T. J. & Ningsih, N. S. 2017 Distributary channels in the fluvial to tidal transition zone. J.  Geophys. Res. 3 (122), 696710; 2016JF004075.
Kukulka, T. & Jay, D. A. 2003a Impacts of Columbia River discharge on salmonid habitat: 2. Changes in shallow-water habitat. J. Geophys. Res. 108 (C9), 120.
Kukulka, T. & Jay, D. A. 2003b Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model. J. Geophys. Res. 108 (C9), 117.
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.
LeBlond, P. H. 1978 On tidal propagation in shallow rivers. J. Geophys. Res. 83 (C9), 47174721.
LeBlond, P. H. 1979 Forced fortnightly tides in shallow rivers. Atmos.-Ocean 17 (3), 253264.
Li, C. & Valle-Levinson, A. 1999 A two-dimensional analytic tidal model for a narrow estuary of arbitrary lateral depth variation: the intratidal motion. J. Geophys. Res. 104 (C10), 2352523543.
Lighthill, J. 2001 Waves in Fluids. Cambridge University Press.
Lorentz, H. A. 1926 Verslag Staatscommissie Zuiderzee 1918–1926, pp. 1345. Algemene Landsdrukkerij,’s-Gravenhage.
Nienhuis, J. H., Hoitink, A. J. F. & Törnqvist, T. E. 2018 Future change to tide-influenced deltas. Geophys. Res. Lett. 45 (8), 34993507.
Parker, B. B.1984 Frictional effects on the tidal dynamics of a shallow estuary. PhD thesis, Johns Hopkins University, Baltimore, MD.
Parker, B. B. 1991 The relative importance of the various nonlinear mechanisms in a wide range of tidal interactions. In Tidal Hydrodynamics, pp. 125152. John Wiley & Sons.
Parker, B. B. 2007 Tidal Analysis and Prediction. NOAA Special Publication.
Prandle, D. & Lane, A. 2015 Sensitivity of estuaries to sea level rise: vulnerability indices. Estuar. Coast. Shelf Sci. 160, 6068.
Pritchard, D. W. 1967 What is an estuary: physical viewpoint. In Estuaries, vol. 83 (ed. Lauff, G. H.), pp. 35. American Association for the Advancement of Science.
Pugh, D. T. 1987 Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John Wiley.
Ray, R., Egbert, G. & Erofeeva, S. 2011 Tide predictions in shelf and coastal waters: status and prospects. In Coastal Altimetry, pp. 191216. Springer.
Reef, K. R. G., Lipari, G., Roos, P. C. & Hulscher, S. J. M. H. 2018 Time-varying storm surges on lorentz’s wadden sea networks. Ocean Dyn. 68 (8), 10511065.
Richards, K. 1982 Rivers: form and Processes in Alluvial Channels. Methuen.
van Rijn, L. C. 1984 Sediment transport, part III: bed forms and alluvial roughness. J. Hydraul. Engng. 110 (12), 17331754.
van Rijn, L. C. 2011 Analytical and numerical analysis of tides and salinities in estuaries. Part I. Tidal wave propagation in convergent estuaries. Ocean Dyn. 61 (11), 17191741.
Sassi, M. G. & Hoitink, A. J. F. 2013 River flow controls on tides and tide-mean water level profiles in a tidal freshwater river. J. Geophys. Res. 118 (9), 41394151.
Savenije, H. H. G. 2001 A simple analytical expression to describe tidal damping or amplification. J. Hydrol. 243 (3), 205215.
Savenije, H. H. G. 2012 Salinity and Tides in Alluvial Estuaries, 2nd completely revised edn.
Savenije, H. H. G. 2015 Prediction in ungauged estuaries: an integrated theory. Water Resourc. Res. 51 (4), 24642476.
Savenije, H. H. G., Toffolon, M., Haas, J. & Veling, E. J. M. Analytical description of tidal dynamics in convergent estuaries. J. Geophys. Res. 113 (C10), 2008.
Schönfeld, J. C.1951 Propagation of tides and similar waves, Staatsdrukkerij- en uitgeversbedrijf Den Haag.
Seminara, G., Pittaluga, M. B. & Tambroni, N. 2012 Morphodynamic equilibrium of tidal channels. In Environmental Fluid Mechanics-Memorial Volume in Honour of Prof. Gerhard Jirka (ed. Rodi, W. & Uhlmann, M.), pp. 153174. CRC.
Souchay, J., Mathis, S. & Tokieda, T. 2012 Tides in Astronomy and Astrophysics, vol. 861. Springer.
Speer, P. E. & Aubrey, D. G. 1985 A study of non-linear tidal propagation in shallow inlet/estuarine systems. Part II. Theory. Estuar. Coast. Shelf Sci. 21 (2), 207224.
Terra, G. M., van de Berg, W. J. & Maas, L. R. M. 2005 Experimental verification of Lorentz linearization procedure for quadratic friction. Fluid Dyn. Res. 36 (3), 175188.
Tolkova, E. 2018 Tsunami Propagation in Tidal Rivers. Springer.
Vatankhah, A. R. & Easa, S. M. 2011 Direct integration of Manning-based gradually varied flow equation. In Proceedings of the Institution of Civil Engineers-Water Management, vol. 164, pp. 257264. Thomas Telford Ltd.
Wilmer, A. III & Costa, G. B. 2008 Solving second-order differential equations with variable coefficients. Intl J. Math. Educ. Sci. Technol. 39 (2), 238243.
Witting, J. M. 1981 A note on Green’s law. J. Geophys. Res. 86 (C3), 19951999.
Woodworth, P. L. 2017 Differences between mean tide level and mean sea level. J. Geodesy 91 (1), 6990.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed