Skip to main content
×
Home

Pulsating pipe flow with large-amplitude oscillations in the very high frequency regime. Part 1. Time-averaged analysis

  • M. Manna (a1), A. Vacca (a2) and R. Verzicco (a3) (a4)
Abstract
Abstract

This paper numerically investigates the effects of a harmonic volume forcing of prescribed frequency on the turbulent pipe flow at a Reynolds number, based on bulk velocity and pipe diameter, of 5900. The thickness of the Stokes layer, resulting from the oscillatory flow component, is a small fraction of the pipe radius and therefore the associated vorticity is confined within a few wall units. The harmonic forcing term is prescribed so that the ratio of the oscillating to the mean bulk velocity () ranges between 1 and 10.6. In all cases the oscillatory flow obeys the Stokes analytical velocity distribution while remarkable changes in the current component are observed. At intermediate values , a relaminarization process occurs, while for , turbulence is affected so much by the harmonic forcing that the near-wall coherent structures, although not fully suppressed, are substantially weakened. The present study focuses on the analysis of the time- and space-averaged statistics of the first- and second-order moments, vorticity fluctuations and Reynolds stress budgets. Since the flow is unsteady not only locally but also in its space-averaged dynamics, it can be analysed using phase-averaged and time-averaged statistics. While the former gives information about the statistics of the fluctuations about the mean, the latter, postponed to a subsequent paper, shows how the mean is affected by the fluctuations. Clearly, the two phenomena are connected and both of them deserve investigation.

Copyright
Corresponding author
Email address for correspondence: verzicco@uniroma2.it
References
Hide All
1. Abramowitz M. & Stegun I. A. 1972 Handbook of Mathematical Functions. Dover.
2. Akhavan R., Kamm R. D. & Shapiro A. H. 1991 An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395442.
3. Barenblatt G. I. 1993a Scaling laws for fully developed shear flows. Part 1. Basic hypotheses and analysis. J. Fluid Mech. 248, 513520.
4. Barenblatt G. I. 1993b Scaling laws for fully developed shear flows. Part 2. Processing of experimental data. J. Fluid Mech. 248, 521529.
5. Bhaganagar K. 2008 Direct numerical simulation of unsteady flow in channel with rough walls. Phys. Fluids 20, 101508.
6. Binder G. & Kueny J. L. 1981 Measurements of the periodic velocity oscillations near the wall in unsteady turbulent channel flow. In Unsteady Turbulent Shear Flow (ed. Michel R., Cousteix J. & Houdeville R ), pp. 100109. Springer.
7. Binder G., Tardu S. F. & Vezin P. 1995 Cyclic modulation of Reynolds stresses and length scales in pulsed turbulent channel flow. Proc. R. Soc. Lond. A 451 (1941), 121139.
8. Blackwelder R. F. & Haritonidis J. H. 1983 Scaling of the bursting frequency in turbulent boundary layers. J. Fluid Mech. 132, 87103.
9. Blel W., Le Gentil-Lelievreb C., Bénézechb T. & Legentilhomme P. 2009 Application of turbulent pulsating flows to the bacterial removal during a cleaning in place procedure. Part 1. Experimental analysis of wall shear stress in a cylindrical pipe. J. Food Engng 90 (4), 422432.
10. Brereton G. J., Reynolds W. C. & Jayaraman R. 1990 Response of a turbulent boundary layer to sinusoidal free stream unsteadiness. J. Fluid Mech. 221, 131159.
11. Choi K. S. 1989 Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 208, 417459.
12. Eggels J. G. M., Unger F., Weiss M. H., Westerweel J., Adrian R. J., Friedrich R. & Nieuwstadt F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175210.
13. Fedele F., Hitt D. L. & Prabhub R. D. 2005 Revisiting the stability of pulsatile pipe flow. Eur. J. Mech. (B/Fluids) 24, 237254.
14. Frohnapfel B., Lammers P., Jovanović J. & Durst F. 2007 Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577, 457466.
15. Gilbrech D. A. & Coombs G. D. 1963 Critical Reynolds numbers for incompressible pulsating flow in tubes. Dev. Theor. Appl. Mech. 1, 292304.
16. Grosch C. E. & Salwen H. 1968 The stability of steady and time-dependent plane Poiseuille flow. J. Fluid Mech. 34 (1), 177205.
17. Hall P. 1975 The stability of Poiseuille flow modulated at high frequencies. Proc. R. Soc. Lond. A 344 (1639), 453464.
18. He S. & Jackson J. D. 2009 An experimental study of pulsating turbulent flow in a pipe. Eur. J. Mech. (B/Fluids) 28, 309320.
19. Herbert D. M. 1972 The energy balance in modulated plane Poiseuille flow. J. Fluid Mech. 56 (1), 7380.
20. Hinze J. O. 1975 Turbulence. McGraw-Hill.
21. Hwang J.-L. & Brereton G. J. 1991 Turbulence in high-frequency periodic fully-developed pipe flow. In Eighth International Symposium on Turbulent Shear Flows (ed. Durst F., Friedrich R., Launder B. E., Schmidt F. W., Schuman U. & Whitelaw J. H. ). Springer.
22. von Kerczek C. H. 1982 The instability of oscillatory plane Poiseuille flow. J. Fluid Mech. 116, 91114.
23. Kim J., Moin P. & Moser R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.
24. Lee M. & Reynolds W. 1985 Numerical experiments on the structure of homogeneous turbulence. Tech. Rep. TF-24. Thermoscience Division, Stanford University.
25. Lodahl C. R., Sumer B. M. & Fredosoe J. 1998 Turbulent combined oscillatory flow and current in a pipe. J. Fluid Mech. 373, 313348.
26. Luchik T. S. & Tiederman W. G. 1987 Timescale and structure of ejections and burst in turbulent channel flow. J. Fluid Mech. 174, 529552.
27. Lumley J. L. & Newman G. 1977 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161178.
28. Manna M. & Vacca A. 1999 An efficient method for the solution of the incompressible Navier–Stokes equations in cylindrical geometries. J. Comput. Phys. 151, 563584.
29. Manna M. & Vacca A. 2005 Resistance reduction in pulsating turbulent pipe flow. Trans. ASME: J. Engng Gas Turbines Power 127, 410417.
30. Manna M. & Vacca A. 2007 Spectral dynamic of pulsating turbulent pipe flow. Comput. Fluids 37, 825835.
31. Manna M. & Vacca A. 2009 Torque reduction in Taylor–Couette flows subject to an axial pressure gradient. J. Fluid Mech. 639, 373401.
32. Mao Z. X. & Hanratty T. J. 1986 Studies of the wall shear stress in a turbulent pulsating pipe flow. J. Fluid Mech. 170, 545564.
33. Mao Z. X. & Hanratty T. J. 1994 Influence of large-amplitude oscillations on turbulent drag. AIChE J. 40 (10), 16011610.
34. Mizuchina T., Maruyama T & Shiozaki Y. 1973 Pulsating turbulent flow in a tube. J. Chem. Engng Japan 6, 487495.
35. Mizushina T., Maruyama T. & Hirasawa H. 1975 Structure of the turbulence in pulsating pipe flows. J. Chem. Engng Japan 8, 210216.
36. Moin P. & Kim J. 1981 Numerical investigation of turbulent channel flow. J. Fluid Mech. 118, 341377.
37. Moser R., Kim J. & Mansour N. N. 1999 Direct numerical simulation of turbulent channel flow up to inline-graphic
$R{e}_{\tau } = 590$
. Phys. Fluids 177, 133166.
38. Moser R. D. & Moin P. 1984 Direct numerical simulation of curved channel flow. TM 85974. NASA.
39. Orlandi P. & Ebstein D. 2000 Turbulent budgets in rotating pipes by DNS. Intl J. Heat Fluid Flow 21, 499505.
40. Orlandi P. & Fatica M. 1997 Direct simulations of a turbulent pipe rotating along the axis. J. Fluid Mech. 343, 4372.
41. Oyewola O., Djenidi L. & Antonia R. A. 2004 Influence of localised wall suction on the anisotropy of the Reynolds stress tensor in a turbulent boundary layer. Exp. Fluids 37, 187193.
42. Ptasinski P. K., Boersma B. J., Nieuwstadt F. T. M., Hulsen M. A., Van Den Brule B. H. A. A. & Hunt J. C. R. 2003 Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251291.
43. Quadrio M., Ricco P. & Viotti C. 2009 Streamwise travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161178.
44. Quadrio M. & Sibilla S. 2000 Numerical simulation of turbulent flow in a pipe oscillating around its axis. J. Fluid Mech. 424, 217241.
45. Ramaprian B. R. & Tu S. W. 1980 An experimental study of oscillatory pipe flow at transitional Reynolds number. J. Fluid Mech. 100, 513544.
46. Ramaprian B. R. & Tu S. W. 1983 Fully developed periodic turbulent pipe flow. Part 2. The detailed structure of the flow. J. Fluid Mech. 137, 5981.
47. Reynolds W. C. & Kassinos S. C. 1995 One-point modelling of rapidly deformed homogeneous turbulence. Proc. R. Soc. Lond. A 451, 87104.
48. Ronneberger D. & Ahrens C. D. 1977 Wall shear stress caused by signal amplitude perturbations of turbulent boundary-layer flow: an experimental investigation. J. Fluid Mech. 83, 433464.
49. Sarpkaja T. 1966 Experimental determination of the critical Reynolds number for pulsating Poiseuille flow. Trans. ASME: J. Basic Engng 88, 589598.
50. Scotti A. & Piomelli U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13 (5), 13671384.
51. Shemer L. 1985 Laminar–turbulent transition in a slowly pulsating pipe flow. Phys. Fluids 28, 35063509.
52. Shemer L. & Kit E. 1984 An experimental investigation of the quasisteady turbulent pulsating flow in a pipe. Phys. Fluids 27, 7276.
53. Shemer L., Wygnanski I. & Kit E. 1985 Pulsating flow in a pipe. J. Fluid Mech. 153, 313337.
54. Singer B., Ferziger J. H. & Reed H. 1989 Numerical simulation of transition in oscillatory plane channel flow. J. Fluid Mech. 208, 4466.
55. Stettler J. C. & Hussain A. K. M. F. 1986 On transition of the pulsatile flow. J. Fluid Mech. 170, 169197.
56. Tardu S. F. & Binder G. 1993 Wall shear stress modulation in unsteady turbulent channel flow with high imposed frequencies. Phys. Fluids 5, 20282034.
57. Tardu S. F., Binder G. & Blackwelder R. F. 1994 Turbulent channel flow with large-amplitude velocity oscillations. J. Fluid Mech. 267, 109151.
58. Tozzi J. T. & von Kerczek C. H. 1986 The stability of oscillatory Hagen–Poiseuille flow. Trans. ASME: J. Appl. Mech. 53, 187192.
59. Tu S. W. & Ramaprian B. R. 1983 Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions. J. Fluid Mech. 137, 3158.
60. Tuzi R. & Blondeaux P. 2008 Intermittent turbulence in a pulsating pipe flow. J. Fluid Mech. 599, 5179.
61. Van Kan J. 1986 A second-order accurate pressure correction scheme for viscous incompressible flow. J. Sci. Stat. Comput. 7, 870891.
62. Viotti C., Quadrio M. & Luchini P. 2009 Streamwise oscillation of spanwise velocity at the wall for turbulent drag reduction. Phys. Fluid 21, 115109.
63. Wallace J. M., Ecklmann H. & Brodkey R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 3948.
64. Willmarth W. W. & Lu S. S. 1972 Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 6592.
65. Yellin E. L. 1966 Laminar–turbulent transition process in pulsatile flow. Circulat. Res. 19, 791804.
66. Zagarola M. V. & Smits A. J. 1998 Mean flow scaling of turbulent pipe flow. J. Fluid Mech. 373, 3379.
67. Zou L. Y., Liu N. S. & Lu X. Y. 2006 An investigation of pulsating turbulent open channel flow by large eddy simulation. Comput. Fluids 35 (1), 74102.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 167 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th November 2017. This data will be updated every 24 hours.