Hostname: page-component-784d4fb959-4tbfc Total loading time: 0 Render date: 2025-07-15T23:42:02.805Z Has data issue: false hasContentIssue false

Quantum implicit representation of vortex filaments in turbulence

Published online by Cambridge University Press:  07 July 2025

Chenjia Zhu
Affiliation:
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
Ziteng Wang
Affiliation:
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
Shiying Xiong*
Affiliation:
Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, PR China
Yaomin Zhao
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China HEDPS-CAPT, Peking University, Beijing 100871, PR China
Yue Yang
Affiliation:
State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, PR China HEDPS-CAPT, Peking University, Beijing 100871, PR China
*
Corresponding author: Shiying Xiong, shiying.xiong@zju.edu.cn

Abstract

Entangled vortex filaments are essential to turbulence, serving as coherent structures that govern nonlinear fluid dynamics and support the reconstruction of fluid fields to reveal statistical properties. This study introduces a quantum implicit representation of vortex filaments in turbulence, employing a levelset method that models the filaments as the intersection of the real and imaginary zero iso-surfaces of a complex scalar field. Describing the fluid field via the scalar field offers distinct advantages in capturing complex structures, topological properties and fluid dynamics, while opening new avenues for innovative solutions through quantum computing platforms. The representation is reformulated into an eigenvalue problem for Hermitian matrices, enabling the conversion of velocity fields into complex scalar fields that embed the vortex filaments. The resulting optimisation is addressed using a variational quantum eigensolver, with Pauli operator truncation and deep learning techniques applied to improve efficiency and reduce noise. The proposed quantum framework achieves a near-linear time complexity and a exponential storage reduction while maintaining a balance of accuracy, robustness and versatility, presenting a promising tool for turbulence analysis, vortex dynamics research, and machine learning dataset generation.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Co-first author.

References

Albash, T. & Lidar, D.A. 2018 Adiabatic quantum computation. Rev. Mod. Phys. 90 (1), 015002.10.1103/RevModPhys.90.015002CrossRefGoogle Scholar
Bai, X.-D. & Zhang, W. 2022 Machine learning for vortex induced vibration in turbulent flow. Comput. Fluids 235, 105266.10.1016/j.compfluid.2021.105266CrossRefGoogle Scholar
Barenghi, C.F. 2007 Knots and unknots in superfluid turbulence. Milan J. Maths 75 (1), 177196.10.1007/s00032-007-0069-5CrossRefGoogle Scholar
Bharadwaj, S.S. & Sreenivasan, K.R. 2023 Hybrid quantum algorithms for flow problems. Proc. Natl Acad. Sci. USA 120 (49), e2311014120.10.1073/pnas.2311014120CrossRefGoogle Scholar
Bharadwaj, S.S. & Sreenivasan, K.R. 2025 Towards simulating fluid flows with quantum computing. Sādhanā 50, 57. Springer.10.1007/s12046-024-02660-3CrossRefGoogle Scholar
Brochu, T., Keeler, T. & Bridson, R. 2012 Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 8795. Eurographics Association.Google Scholar
Brown, G.L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64 (4), 775816.10.1017/S002211207400190XCrossRefGoogle Scholar
Cerezo, M. et al. 2021 Variational quantum algorithms. Nat. Rev. Phys. 3 (9), 625644.10.1038/s42254-021-00348-9CrossRefGoogle Scholar
Chen, Z.-Y. et al. 2024 Enabling large-scale and high-precision fluid simulations on near-term quantum computers. Comput. Methods Appl. Mech. Engng 432, 117428.10.1016/j.cma.2024.117428CrossRefGoogle Scholar
Davidson, P.A. 2004 Turbulence: an Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Francis, J.G.F. 1961 The QR transformation a unitary analogue to the LR transformation – Part 1. Comput. J. 4 (3), 265271.10.1093/comjnl/4.3.265CrossRefGoogle Scholar
Giannakis, D., Ourmazd, A., Pfeffer, P., Schumacher, J. & Slawinska, J. 2022 Embedding classical dynamics in a quantum computer. Phys. Rev. A 105 (5), 052404.10.1103/PhysRevA.105.052404CrossRefGoogle Scholar
Gilyén, A., Su, Y., Low, G.H. & Wiebe, N. 2019 Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 193204. Association for Computing Machinery.10.1145/3313276.3316366CrossRefGoogle Scholar
Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P. & Lin, M. 2012 Large-scale fluid simulation using velocity–vorticity domain decomposition. ACM Trans. Graph. 31 (6), 148.10.1145/2366145.2366167CrossRefGoogle Scholar
Grimsley, H.R., Economou, S.E., Barnes, E. & Mayhall, N.J. 2019 An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10 (1), 3007.10.1038/s41467-019-10988-2CrossRefGoogle Scholar
Günther, T. & Theisel, H. 2018 The state of the art in vortex extraction. Comput. Graph. Forum 37 (6), 149173.10.1111/cgf.13319CrossRefGoogle Scholar
Harlow, F.H. & Welch, J.E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8 (12), 21822189.10.1063/1.1761178CrossRefGoogle Scholar
Higham, N.J. 2011 Gaussian elimination. Wiley Interdiscip. Rev. Comput. Stat. 3 (3), 230238.10.1002/wics.164CrossRefGoogle Scholar
Horowitz, M. & Grumbling, E. 2019 Quantum Computing: Progress and Prospects. National Academies Press.Google Scholar
Huang, H.-Y., Kueng, R. & Preskill, J. 2020 Predicting many properties of a quantum system from very few measurements. Nat. Phys. 16 (10), 10501057.10.1038/s41567-020-0932-7CrossRefGoogle Scholar
Huang, Y., Li, Q., Hou, X., Wu, R., Yung, M.-H., Bayat, A. & Wang, X. 2022 Robust resource-efficient quantum variational ansatz through an evolutionary algorithm. Phys. Rev. A 105 (5), 052414.10.1103/PhysRevA.105.052414CrossRefGoogle Scholar
Hussain, A.K.M.F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.10.1017/S0022112086001192CrossRefGoogle Scholar
Ingelmann, J., Bharadwaj, S.S., Pfeffer, P., Sreenivasan, K.R. & Schumacher, J. 2024 Two quantum algorithms for solving the one-dimensional advection–diffusion equation. Comput. Fluids 281, 106369.10.1016/j.compfluid.2024.106369CrossRefGoogle Scholar
Ishida, S., Wojtan, C. & Chern, A. 2022 Hidden degrees of freedom in implicit vortex filaments. ACM Trans. Graph. 41 (6), 114.10.1145/3550454.3555459CrossRefGoogle Scholar
Itani, W., Sreenivasan, K.R. & Succi, S. 2024 Quantum algorithm for lattice Boltzmann (QALB) simulation of incompressible fluids with a nonlinear collision term. Phys. Fluids 36 (1), 017112.10.1063/5.0176569CrossRefGoogle Scholar
Jerrard, R.L. & Smets, D. 2018 Leapfrogging vortex rings for the three dimensional Gross–Pitaevskii equation. Ann. PDE 4 (1), 4.10.1007/s40818-017-0040-xCrossRefGoogle Scholar
Jiménez, J. & Wray, A.A. 1998 On the characteristics of vortex filaments in isotropic turbulence. J. Fluid Mech. 373, 255285.10.1017/S0022112098002341CrossRefGoogle Scholar
Jiménez, J., Wray, A.A., Saffman, P.G. & Rogallo, R.S. 1993 The structure of intense vorticity in isotropic turbulence. J. Fluid Mech. 255, 6590.10.1017/S0022112093002393CrossRefGoogle Scholar
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M. & Gambetta, J.M. 2017 Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549 (7671), 242246.10.1038/nature23879CrossRefGoogle Scholar
Kirby, W., Motta, M. & Mezzacapo, A. 2023 Exact and efficient Lanczos method on a quantum computer. Quantum 7, 1018.10.22331/q-2023-05-23-1018CrossRefGoogle Scholar
Kleckner, D. & Irvine, W.T.M. 2013 Creation and dynamics of knotted vortices. Nat. Phys. 9 (4), 253258.10.1038/nphys2560CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301.Google Scholar
Kuo, A.Y.-S. & Corrsin, S. 1972 Experiment on the geometry of the fine-structure regions in fully turbulent fluid. J. Fluid Mech. 56 (3), 447479.10.1017/S0022112072002459CrossRefGoogle Scholar
Lanczos, C. 1950 An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl Bur. Stand. 45 (4), 255282.10.6028/jres.045.026CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 2013 Quantum Mechanics: Non-Relativistic Theory. vol. 3. Elsevier.Google Scholar
Lavrijsen, W., Tudor, A., Muller, J., Iancu, C. & De Jong, W. 2020 Classical optimizers for noisy intermediate-scale quantum devices. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE), pp. 267277. IEEE.10.1109/QCE49297.2020.00041CrossRefGoogle Scholar
Lee, H., Simone, N., Su, Y., Zhu, Y., Ribeiro, B.L.R., Franck, J.A. & Breuer, K. 2022 Leading edge vortex formation and wake trajectory: synthesizing measurements, analysis, and machine learning. Phys. Rev. Fluids 7 (7), 074704.10.1103/PhysRevFluids.7.074704CrossRefGoogle Scholar
Lensgraf, S. & Mettu, R.R. 2017 An improved toolpath generation algorithm for fused filament fabrication. In 2017 IEEE International Conference on Robotics and Automation, pp. 11811187. Institute of Electrical and Electronics Engineers.10.1109/ICRA.2017.7989141CrossRefGoogle Scholar
Li, X. & Liao, S. 2018 Clean numerical simulation: a new strategy to obtain reliable solutions of chaotic dynamic systems. Appl. Maths Mech. (English Ed.) 39 (11), 15291546.10.1007/s10483-018-2383-6CrossRefGoogle Scholar
Liao, S., Li, X. & Yang, Y. 2022 Three-body problem – from Newton to supercomputer plus machine learning. New Astron. 96, 101850.10.1016/j.newast.2022.101850CrossRefGoogle Scholar
Lim, T.T. 1997 A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers. Phys. Fluids 9 (1), 239241.10.1063/1.869160CrossRefGoogle Scholar
Liu, J.-P., Kolden, H.Ø., Krovi, H.K., Loureiro, N.F., Trivisa, K. & Childs, A.M. 2021 Efficient quantum algorithm for dissipative nonlinear differential equations. Proc. Natl Acad. Sci. USA 118 (35), e2026805118.10.1073/pnas.2026805118CrossRefGoogle Scholar
Lu, Z. & Yang, Y. 2024 Quantum computing of reacting flows via Hamiltonian simulation. Proc. Combust. Inst. 40 (1–4), 105440.10.1016/j.proci.2024.105440CrossRefGoogle Scholar
Lundgren, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids 25 (12), 21932203.10.1063/1.863957CrossRefGoogle Scholar
Martyn, J.M., Rossi, Z.M., Tan, A.K. & Chuang, I.L. 2021 Grand unification of quantum algorithms. PRX Quantum 2 (4), 040203.10.1103/PRXQuantum.2.040203CrossRefGoogle Scholar
McClean, J.R., Romero, J., Babbush, R. & Aspuru-Guzik, A. 2016 The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18 (2), 023023.10.1088/1367-2630/18/2/023023CrossRefGoogle Scholar
Mitchell, A.M. & Délery, J. 2001 Research into vortex breakdown control. Prog. Aerosp. Sci. 37 (4), 385418.10.1016/S0376-0421(01)00010-0CrossRefGoogle Scholar
Mulder, W., Osher, S. & Sethian, J.A. 1992 Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100 (2), 209228.10.1016/0021-9991(92)90229-RCrossRefGoogle Scholar
Nielsen, M.A. & Chuang, I.L. 2010 Quantum Computation and Quantum Information. Cambridge University Press.Google Scholar
O’Donnell, R. & Wright, J. 2016 Efficient quantum tomography. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, pp. 899912. Association for Computing Machinery.10.1145/2897518.2897544CrossRefGoogle Scholar
Pullin, D.I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12 (9), 23112319.10.1063/1.1287512CrossRefGoogle Scholar
Pullin, D.I. & Saffman, P.G. 1998 Vortex dynamics in turbulence. Annu. Rev. Fluid Mech. 30 (1), 3151.10.1146/annurev.fluid.30.1.31CrossRefGoogle Scholar
Ribeiro, B.L.R. & Franck, J.A. 2023 Machine learning to classify vortex wakes of energy harvesting oscillating foils. AIAA J. 61 (3), 12811291.10.2514/1.J062091CrossRefGoogle Scholar
Ross, T.Y. & Dollár, G. 2017 Focal loss for dense object detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 29802988. Institute of Electrical and Electronics Engineers.Google Scholar
Saffman, P.G. 1995 Vortex Dynamics. Cambridge University Press.Google Scholar
She, Z.-S., Jackson, E. & Orszag, S.A. 1990 Intermittent vortex structures in homogeneous isotropic turbulence. Nature 344 (6263), 226228.10.1038/344226a0CrossRefGoogle Scholar
Shen, W., Yao, J. & Yang, Y. 2024 Designing turbulence with entangled vortices. Proc. Natl Acad. Sci. USA 121 (35), e2405351121.10.1073/pnas.2405351121CrossRefGoogle Scholar
Siggia, E.D. 1981 Numerical study of small-scale intermittency in three-dimensional turbulence. J. Fluid Mech. 107, 375406.10.1017/S002211208100181XCrossRefGoogle Scholar
Sussman, M., Smereka, P. & Osher, S. 1994 A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1), 146159.10.1006/jcph.1994.1155CrossRefGoogle Scholar
Tao, R., Ren, H., Tong, Y. & Xiong, S. 2021 Construction and evolution of knotted vortex tubes in incompressible Schrödinger flow. Phys. Fluids 33 (7), 077112.10.1063/5.0058109CrossRefGoogle Scholar
Tilly, J. et al. 2022 The variational quantum eigensolver: a review of methods and best practices. Phys. Rep. 986, 1128.10.1016/j.physrep.2022.08.003CrossRefGoogle Scholar
Wang, X., Chen, W.-L., Chang, X., Li, H. & Gao, D. 2024 Deformation and splitting of a vortex ring along a thin plate. Ocean Engng 299, 117159.10.1016/j.oceaneng.2024.117159CrossRefGoogle Scholar
Weißmann, S., Pinkall, U. & Schröder, P. 2014 Smoke rings from smoke. ACM Trans. Graph. 33 (4), 140.10.1145/2601097.2601171CrossRefGoogle Scholar
Woo, S., Park, J., Lee, J.-Y. & Kweon, I.S. 2018 CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision, pp. 319. Springer.Google Scholar
Xia, C., Zhang, J., Kerrigan, E.C. & Rigas, G. 2024 Active flow control for bluff body drag reduction using reinforcement learning with partial measurements. J. Fluid Mech. 981, A17.10.1017/jfm.2024.69CrossRefGoogle Scholar
Xiao, Y., Yang, L.M., Shu, C., Chew, S.C., Khoo, B.C., Cui, Y.D. & Liu, Y.Y. 2024 Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations. Phys. Fluids 36 (9), 097145.10.1063/5.0226232CrossRefGoogle Scholar
Xiong, S., Wang, Z., Wang, M. & Zhu, B. 2022 A Clebsch method for free-surface vortical flow simulation. ACM Trans. Graph. 41 (4), 116.10.1145/3528223.3530150CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2017 The boundary-constraint method for constructing vortex-surface fields. J. Comput. Phys. 339, 3145.10.1016/j.jcp.2017.03.013CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2019 a Construction of knotted vortex tubes with the writhe-dependent helicity. Phys. Fluids 31 (4), 047101.10.1063/1.5088015CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2019 b Identifying the tangle of vortex tubes in homogeneous isotropic turbulence. J. Fluid Mech. 874, 952978.10.1017/jfm.2019.487CrossRefGoogle Scholar
Xiong, S. & Yang, Y. 2020 Effects of twist on the evolution of knotted magnetic flux tubes. J. Fluid Mech. 895, A28.10.1017/jfm.2020.327CrossRefGoogle Scholar
Xu, X. et al. 2024 Mindspore quantum: a user-friendly, high-performance, and AI-compatible quantum computing framework. arXiv preprint arXiv: 2406.17248.Google Scholar
Yang, S., Xiong, S., Zhang, Y., Feng, F., Liu, J. & Zhu, B. 2021 Clebsch gauge fluid. ACM Trans. Graph. 40, 99.10.1145/3450626.3459866CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 A physical model of turbulence cascade via vortex reconnection sequence and avalanche. J. Fluid Mech. 883, A51.10.1017/jfm.2019.905CrossRefGoogle Scholar