Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 71
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Qiang, Wei and Cao, Hui 2014. Flow patterns in inclined-layer turbulent convection. The European Physical Journal E, Vol. 37, Issue. 7,

    Shishkina, Olga and Wagner, Claus 2012. A numerical study of turbulent mixed convection in an enclosure with heated rectangular elements. Journal of Turbulence, Vol. 13, p. N22.

    Weidauer, Thomas and Schumacher, Jörg 2012. Moist turbulent Rayleigh-Bénard convection with Neumann and Dirichlet boundary conditions. Physics of Fluids, Vol. 24, Issue. 7, p. 076604.

    Grötzbach, G. 2011. Revisiting the resolution requirements for turbulence simulations in nuclear heat transfer. Nuclear Engineering and Design, Vol. 241, Issue. 11, p. 4379.

    Ng, Chong Shen Ooi, Andrew Lohse, Detlef and Chung, Daniel 2015. Vertical natural convection: application of the unifying theory of thermal convection. Journal of Fluid Mechanics, Vol. 764, p. 349.

    Scheel, J. D. Kim, E. and White, K. R. 2012. Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, Vol. 711, p. 281.

    Wagner, Sebastian Shishkina, Olga and Wagner, Claus 2012. Boundary layers and wind in cylindrical Rayleigh–Bénard cells. Journal of Fluid Mechanics, Vol. 697, p. 336.

    Vreugdenhil, Catherine A. Gayen, Bishakhdatta and Griffiths, Ross W. 2016. Mixing and dissipation in a geostrophic buoyancy-driven circulation. Journal of Geophysical Research: Oceans, Vol. 121, Issue. 8, p. 6076.

    Mellado, Juan Pedro 2012. Direct numerical simulation of free convection over a heated plate. Journal of Fluid Mechanics, Vol. 712, p. 418.

    Brauckmann, Hannes J. and Eckhardt, Bruno 2013. Direct numerical simulations of local and global torque in Taylor–Couette flow up to Re = 30 000. Journal of Fluid Mechanics, Vol. 718, p. 398.

    Gastine, Thomas Wicht, Johannes and Aurnou, Jonathan M. 2015. Turbulent Rayleigh–Bénard convection in spherical shells. Journal of Fluid Mechanics, Vol. 778, p. 721.

    Shishkina, Olga and Wagner, Claus 2011. Modelling the influence of wall roughness on heat transfer in thermal convection. Journal of Fluid Mechanics, Vol. 686, p. 568.

    Goluskin, David and Spiegel, Edward A. 2012. Convection driven by internal heating. Physics Letters A, Vol. 377, Issue. 1-2, p. 83.

    Zonta, Francesco and Chibbaro, Sergio 2016. Entropy production and Fluctuation Relation in turbulent thermal convection. EPL (Europhysics Letters), Vol. 114, Issue. 5, p. 50011.

    Stevens, Richard J. A. M. Lohse, Detlef and Verzicco, Roberto 2011. Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. Journal of Fluid Mechanics, Vol. 688, p. 31.

    WITTENBERG, RALF W. 2010. Bounds on Rayleigh–Bénard convection with imperfectly conducting plates. Journal of Fluid Mechanics, Vol. 665, p. 158.

    Sbragaglia, M. and Sugiyama, K. 2010. Volumetric formulation for a class of kinetic models with energy conservation. Physical Review E, Vol. 82, Issue. 4,

    Whitehead, Jared P. and Doering, Charles R. 2012. Rigid bounds on heat transport by a fluid between slippery boundaries. Journal of Fluid Mechanics, Vol. 707, p. 241.

    Zonta, Francesco Marchioli, Cristian and Soldati, Alfredo 2012. Modulation of turbulence in forced convection by temperature-dependent viscosity. Journal of Fluid Mechanics, Vol. 697, p. 150.

    Stevens, Richard J. A. M. Clercx, Herman J. H. and Lohse, Detlef 2010. Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection. Physics of Fluids, Vol. 22, Issue. 8, p. 085103.

  • Journal of Fluid Mechanics, Volume 643
  • January 2010, pp. 495-507

Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection

  • DOI:
  • Published online: 15 January 2010

Results from direct numerical simulation (DNS) for three-dimensional Rayleigh–Bénard convection in a cylindrical cell of aspect ratio 1/2 and Prandtl number Pr=0.7 are presented. They span five decades of Rayleigh number Ra from 2 × 106 to 2 × 1011. The results are in good agreement with the experimental data of Niemela et al. (Nature, vol. 404, 2000, p. 837). Previous DNS results from Amati et al. (Phys. Fluids, vol. 17, 2005, paper no. 121701) showed a heat transfer that was up to 30% higher than the experimental values. The simulations presented in this paper are performed with a much higher resolution to properly resolve the plume dynamics. We find that in under-resolved simulations the hot (cold) plumes travel further from the bottom (top) plate than in the better-resolved ones, because of insufficient thermal dissipation mainly close to the sidewall (where the grid cells are largest), and therefore the Nusselt number in under-resolved simulations is overestimated. Furthermore, we compare the best resolved thermal boundary layer profile with the Prandtl–Blasius profile. We find that the boundary layer profile is closer to the Prandtl–Blasius profile at the cylinder axis than close to the sidewall, because of rising plumes close to the sidewall.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

G. Ahlers , S. Grossmann & D. Lohse 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503.

G. Amati , K. Koal , F. Massaioli , K. R. Sreenivasan & R. Verzicco 2005 Turbulent thermal convection at high Rayleigh numbers for a constant-Prandtl-number fluid under Boussinesq conditions. Phys. Fluids 17, 121701.

X. Chavanne , F. Chilla , B. Castaing , B. Hebral , B. Chabaud & J. Chaussy 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.

X. Chavanne , F. Chilla , B. Chabaud , B. Castaing & B. Hebral 2001 Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Phys. Fluids 13, 13001320.

D. Funfschilling , E. Bodenschatz & G. Ahlers 2009 Search for the ‘ultimate state’ in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 103, 014503.

S. Grossmann & D. Lohse 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.

S. Grossmann & D. Lohse 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66, 016305.

G. Grötzbach 1983 Spatial resolution for direct numerical simulations of Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.

F. Heslot , B. Castaing & A. Libchaber 1987 Transition to turbulence in helium gas. Phys. Rev. A 36, 58705873.

H. Johnston & C. R. Doering 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102, 064501.

R. H. Kraichnan 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5, 13741389.

R. P. J. Kunnen , H. J. H. Clercx , B. J. Geurts , L. J. A. Bokhoven , R. A. D. Akkermans & R. Verzicco 2008 A numerical and experimental investigation of structure function scaling in turbulent Rayleigh–Bénard convection. Phys. Rev. E 77, 016302.

D. Lohse & F. Toschi 2003 The ultimate state of thermal convection. Phys. Rev. Lett. 90, 034502.

D. Lohse & K. Q. Xia 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.

J. Niemela , L. Skrbek , K. R. Sreenivasan & R. Donnelly 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.

P. E. Roche , B. Castaing , B. Chabaud & B. Hebral 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58, 693698.

X. D. Shang , P. Tong & K.-Q. Xia 2008 Scaling of the local convective heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 100, 244503.

O. Shishkina & C. Wagner 2007 Local heat fluxes in turbulent Rayleigh–Bénard convection. Phys Fluids. 19, 085107.

B. I. Shraiman & E. D. Siggia 1990 Heat transport in high-Rayleigh number convection. Phys. Rev. A 42, 36503653.

E. A. Spiegel 1971 Convection in stars. Annu. Rev. Astron. Astrophys. 9, 323352.

R. Verzicco & P. Orlandi 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.

J.-Q. Zhong , R. J. A. M. Stevens , H. J. H. Clercx , R. Verzicco , D. Lohse & G. Ahlers 2009 Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *