Skip to main content Accessibility help
×
Home

Rankine–Hugoniot relations for shocks in heterogeneous mixtures

  • S. L. GAVRILYUK (a1) and R. SAUREL (a2)

Abstract

The conservation of mass, momentum and energy are not sufficient to close a system of jump relations for shocks propagating in a heterogeneous mixture of compressible fluids. We propose here a closed set of relations corresponding to a two-stage structure of shock fronts. At the first stage, microkinetic energy due to the relative motion of mixture components is produced at the shock front. At the second stage, this microkinetic energy disappears inducing strong variations in the thermodynamical states that reach mechanical equilibrium. The microkinetic energy produced at the shock front is estimated by using an idea developed earlier for turbulent shocks in compressible fluids. The relaxation zone between the shocked state and the equilibrium state is integrated over a thermodynamic path a justification of which is provided. Comparisons with experiments on shock propagation in a mixture of condensed materials confirm the proposed theory.

Copyright

Corresponding author

Author to whom correspondence should be addressed.

References

Hide All
Alekseev, Yu. F., Al'tshuler, L. V. & Krupnikova, V. P. 1971 Shock compression of two-component paraffin-tungsten mixtures. J. Appl. Mech. Tech. Phys. 12, 624627.
Baer, M. R. & Nunziato, J. W. 1986 A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Intl J. Multiphase Flow 12, 861889.
Baer, M. R. & Trott, W. M. 2002 Theoretical and experimental mesoscale studies of impact-loaded granular explosives and simulant materials. Proc. 12th Intl Detonation Symposium, San Diego, CA, ONR 333-05-2.
Bardenhagen, S. G., Roessig, K. M., Guilkey, J. E. Byutner, O., Bedrov, D. & Smith, G. D. 2002 Direct numerical simulation of weak shocks in granular materials. Proc. 12th Intl Detonantion Symposium, San Diego, CA, ONR 333-05-2.
Bedford, A. & Drumheller, D. S. 1978 Theories of immiscible and structured mixtures. Intl J. Engng Sci. 21, 863960.
Benson, D. J., Nesterenko, V. F., Jonsdottir, F. & Meyers, M. A. 1997 Quasistatic and dynamic regimes of granular material deformation under impulse loading. J. Mech. Phys. Solids 45, 19551999.
Bdzil, J. B., Menikoff, R., Son, S. F., Kapila, A. K. & Stewart, D. S. 1999 Two-phase modeling of a deflagration-to-detonation transition in granular materials : A critical examination of the modeling issues. Phys. Fluids 11, 378402.
Dremin, A. N. & Karpukhin, I. A. 1960 Method of determination of shock adiabats of disperse materials. Prikl. Mekh. Tekh. Fiz. N3, 184188 (in Russian).
Fedorov, A. V. & Fedorova, N. N. 1992 Structute, propagation and reflection of shock waves in a mixture of solids (the hydrodynamic approximation). J. Appl. Mech. Tech. Phys. 33, N 4 487494.
Fickett, W. & Davis, W. C. 1979 Detonation : Theory and Experiment. University of California Press, Berckley.
Gavrilyuk, S. L. & Saurel, R. 2002 Mathematical and numerical modeling of two-phase compressible flows with micro-inertia. J. Comput. Phys. 175, 326360.
Gavrilyuk, S. L. & Saurel, R. 2006 Estimation of the turbulent energy production across a shock wave. J. Fluid Mech. 549, 131139.
Kapila, A. K., Menikoff, R., Bdzil, J. B., Son, S. F. & Stewart, D. S. 2001 Two-phase modeling of DDT in granular materials: reduced equations. Phys. Fluids 13, 30023024.
Kapila, A. K., Son, S. F., Bdzil, J. B., Menikoff, R. & Stewart, D. S. 1997 Two-phase modeling of DDT : structure of the velocity-relaxation zone. Phys. Fluids 9, 38853897.
Krueger, B. R. & Vreeland, T. Jr., 1991 A Hugoniot theory for solid and powder mixtures. J. Appl. Phys. 69, 710716.
Marsh, S. P. 1980 LASL Shock Hugoniot Data. University of California Press.
McQueen, R. G., Marsh, S. P., Taylor, J. W., Fritz, J. N. & Carter, W. J. 1970 High Velocity Impact Phenomena (ed. Kinslow, R.), p. 293. Academic.
Mohammadi, B. & Pironneau, O. 1994 Analysis of the k-ϵ Turbulence Model. Masson/Wiley.
Nesterenko, V. F. 2001 Dynamics of Heterogeneous Materials. Springer.
Resnyansky, A. D. & Bourne, N. K. 2004 Shock-wave compression of a porous material. J. Appl. Phys. 95, 17601769.
Saurel, R., Gavrilyuk, S. L. & Renaud, F. 2003 A multiphase model with internal degrees of freedom : application to shock-bubble interaction. J. Fluid Mech. 495, 283321.
Saurel, R. & LeMetayer, O. Metayer, O. 2001 A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239271.
Saurel, R., LeMetayer, O. Metayer, O., Massoni, J. & Gavrilyuk, S. L. 2007 Shock jump relations for multiphase mixtures with stiff mechanical relaxation. Shock Waves (to appear), http://iusti.polytech.univ-mrs.fr/smash/publications.html
Trunin, R. F. 2001 Shock compression of condensed materials (laboratory study). Phys. – Uspekhi 44, N 4, 371396.
Wilcox, D. 1998 Turbulence Modeling for CFD. DCW Industries.
Wood, A. B. 1930 A Textbook of Sound. G. Bell and Sons LTD, London.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed