Alboussière, T., Deguen, R. & Melzani, M.
2010
Melting-induced stratification above the Earth’s inner core due to convective translation. Nature
466, 744–747.

Almgren, R. F.
1999
Second-order phase field asymptotics for unequal conductivities. SIAM J. Appl. Maths
59 (6), 2086–2107.

Anderson, D. M., McFadden, G. B. & Wheeler, A. A.
2000
A phase-field model of solidification with convection. Physica D
135 (1), 175–194.

Andersson, C.2002 Phase-field simulation of dendritic solidification. PhD thesis, Royal Institute of Technology KTH, Department of Numerical Analysis and Computer Science.

Angot, P., Bruneau, C.-H. & Fabrie, P.
1999
A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math.
81 (4), 497–520.

Beckermann, C., Diepers, H.-J., Steinbach, I., Karma, A. & Tong, X.
1999
Modeling melt convection in phase-field simulations of solidification. J. Comput. Phys.
154 (2), 468–496.

Bhattacharjee, K. J.
1991
Parametric resonance in Rayleigh–Bénard convection with corrugated geometry. Phys. Rev. A
43, 819–821.

Bodenschatz, E., Pesch, W. & Ahlers, G.
2000
Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech.
32 (1), 709–778.

Boettinger, W. J., Warren, J. A., Beckermann, C. & Karma, A.
2002
Phase-field simulation of solidification. Annu. Rev. Mater. Res.
32 (1), 163–194.

Busse, F. H.
1983
Generation of mean flows by thermal convection. Physica D
9 (3), 287–299.

Caginalp, G.
1989
Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. Phys. Rev. A
39, 5887–5896.

Chandrasekhar, S.
1961
Hydrodynamic and Hydromagnetic Stability. Dover.

Ciliberto, S. & Laroche, C.
1999
Random roughness of boundary increases the turbulent convection scaling exponent. Phys. Rev. Lett.
82, 3998–4001.

Claudin, P., Durán, O. & Andreotti, B.
2017
Dissolution instability and roughening transition. J. Fluid Mech.
832, R2.

Coullet, P. & Huerre, P.
1986
Resonance and phase solitons in spatially-forced thermal convection. Physica D
23 (1), 27–44.

Couston, L.-A., Lecoanet, D., Favier, B. & Le Bars, M.
2017
Dynamics of mixed convective–stably-stratified fluids. Phys. Rev. Fluids
2, 094804.

Cross, M. C. & Hohenberg, P. C.
1993
Pattern formation outside of equilibrium. Rev. Mod. Phys.
65, 851–1112.

Curry, J. H., Herring, J. R., Loncaric, J. & Orszag, S. A.
1984
Order and disorder in two- and three-dimensional Bénard convection. J. Fluid Mech.
147, 1–38.

Davaille, A.
1999
Two-layer thermal convection in miscible viscous fluids. J. Fluid Mech.
379, 223–253.

Davis, S. H., Müller, U. & Dietsche, C.
1984
Pattern selection in single-component systems coupling Bénard convection and solidification. J. Fluid Mech.
144, 133–151.

Du, Y.-B. & Tong, P.
2000
Turbulent thermal convection in a cell with ordered rough boundaries. J. Fluid Mech.
407, 57–84.

Favier, B. & Bushby, P. J.
2012
Small-scale dynamo action in rotating compressible convection. J. Fluid. Mech.
690, 262–287.

Favier, B., Silvers, L. J. & Proctor, M. R. E.
2014
Inverse cascade and symmetry breaking in rapidly rotating Boussinesq convection. Phys. Fluids
26 (9), 096605.

Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 NEK5000 v17.0: open source spectral element CFD solver. Argonne National Laboratory, Illinois. Available at: http://nek5000.mcs.anl.gov.
Fitzgerald, J. G. & Farrell, B. F.
2014
Mechanisms of mean flow formation and suppression in two-dimensional Rayleigh–Bénard convection. Phys. Fluids
26 (5), 054104.

Gastine, T., Wicht, J. & Aurnou, J. M.
2015
Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech.
778, 721–764.

Gibou, F., Chen, L., Nguyen, D. & Banerjee, S.
2007
A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys.
222 (2), 536–555.

Goldhirsch, I., Pelz, R. B. & Orszag, S. A.
1989
Numerical simulation of thermal convection in a two-dimensional finite box. J. Fluid Mech.
199, 1–28.

Gollub, J. P. & Benson, S. V.
1980
Many routes to turbulent convection. J. Fluid Mech.
100 (3), 449–470.

Goluskin, D., Johnston, H., Flierl, G. R. & Spiegel, E. A.
2014
Convectively driven shear and decreased heat flux. J. Fluid Mech.
759, 360–385.

Grannan, A. M., Favier, B., Le Bars, M. & Aurnou, J. M.
2017
Tidally forced turbulence in planetary interiors. Geophys. J. Intl
208 (3), 1690–1703.

Grossmann, S. & Lohse, D.
2000
Scaling in thermal convection: a unifying theory. J. Fluid Mech.
407, 27–56.

Jiaung, W.-S., Ho, J.-R. & Kuo, C.-P.
2001
Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transfer
39 (2), 167–187.

Karma, Alain & Rappel, Wouter-Jan
1996
Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E
53, R3017–R3020.

Keitzl, T., Mellado, J. P. & Notz, D.
2016
Impact of thermally driven turbulence on the bottom melting of ice. J. Phys. Oceanogr.
46 (4), 1171–1187.

Kelly, R. E. & Pal, D.
1978
Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech.
86 (3), 433–456.

Killworth, P. D. & Manins, P. C.
1980
A model of confined thermal convection driven by non-uniform heating from below. J. Fluid Mech.
98 (3), 587–607.

Kogan, A. B., Murphy, D. & Meyer, H.
1999
Rayleigh–Bénard convection onset in a compressible fluid: ^{3}He near *T*
_{
C
}
. Phys. Rev. Lett.
82, 4635–4638.

Kolomenskiy, D. & Schneider, K.
2009
A fourier spectral method for the Navier–Stokes equations with volume penalization for moving solid obstacles. J. Comput. Phys.
228 (16), 5687–5709.

Kraichnan, R. H.
1962
Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids
5 (11), 1374–1389.

Labrosse, S., Morison, A., Deguen, R. & Alboussière, T.
2018
Rayleigh–Bénard convection in a creeping solid with melting and freezing at either or both its horizontal boundaries. J. Fluid Mech.
846, 5–36.

Le Bars, M. & Worster, M. G.
2006
Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech.
550, 149–173.

Mackenzie, J. A. & Robertson, M. L.
2002
A moving mesh method for the solution of the one-dimensional phase-field equations. J. Comput. Phys.
181 (2), 526–544.

Manneville, P.
2006
Rayleigh–Bénard Convection: Thirty Years of Experimental, Theoretical, and Modeling Work, pp. 41–65. Springer.

Martin, S. & Kauffman, P.
1977
An experimental and theoretical study of the turbulent and laminar convection generated under a horizontal ice sheet floating on warm salty water. J. Phys. Oceanogr.
7 (2), 272–283.

Matthews, P. C., Proctor, M. R. E. & Weiss, N. O.
1995
Compressible magnetoconvection in three dimensions: planforms and nonlinear behaviour. J. Fluid Mech.
305, 281–305.

Meakin, P. & Jamtveit, B.
2010
Geological pattern formation by growth and dissolution in aqueous systems. Proc R. Soc. Lond. A
466 (2115), 659–694.

Mittal, R. & Iaccarino, G.
2005
Immersed boundary methods. Annu. Rev. Fluid Mech.
37 (1), 239–261.

Moore, D. R. & Weiss, N. O.
1973
Nonlinear penetrative convection. J. Fluid Mech.
61 (3), 553–581.

Moore, M. N. J., Ristroph, L., Childress, S., Zhang, J. & Shelley, M. J.
2013
Self-similar evolution of a body eroding in a fluid flow. Phys. Fluids
25 (11), 116602.

Penrose, O. & Fife, P. C.
1990
Thermodynamically consistent models of phase-field type for the kinetic of phase transitions. Physica D
43 (1), 44–62.

Prat, J., Massaguer, J. M. & Mercader, I.
1995
Large scale flows and resonances in 2D thermal convection. Phys. Fluids
7 (1), 121–134.

Rabbanipour Esfahani, B., Hirata, S. C., Berti, S. & Calzavarini, E.
2018
Basal melting driven by turbulent thermal convection. Phys. Rev. Fluids
3, 053501.

Ristroph, L.
2018
Sculpting with flow. J. Fluid Mech.
838, 1–4.

Roberts, P. H.
2015
Theory of the geodynamo. In Treatise on Geophysics, 2nd edn (ed. Schubert, G.), pp. 57–90. Elsevier.

Roche, P.-E., Gauthier, F., Kaiser, R. & Salort, J.
2010
On the triggering of the ultimate regime of convection. New J. Phys.
12 (8), 085014.

Roppo, M. N., Davis, S. H. & Rosenblat, S.
1984
Bénard convection with time periodic heating. Phys. Fluids
27 (4), 796–803.

Rossby, H. T.
1965
On thermal convection driven by non-uniform heating from below: an experimental study. Deep Sea Res.
12 (1), 9–16.

Rusaouën, E., Liot, O., Castaing, B., Salort, J. & Chillà, F.
2018
Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries. J. Fluid Mech.
837, 443–460.

Singh, J., Bajaj, R. & Kaur, P.
2015
Bicritical states in temperature-modulated Rayleigh–Bénard convection. Phys. Rev. E
92, 013005.

Sondak, D., Smith, L. M. & Waleffe, F.
2015
Optimal heat transport solutions for Rayleigh–Bénard convection. J. Fluid Mech.
784, 565–595.

Stevens, B.
2005
Atmospheric moist convection. Annu. Rev. Earth Planet. Sci.
33 (1), 605–643.

Tackley, P. J.
1996
Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res.
101 (B2), 3311–3332.

Toppaladoddi, S., Succi, S. & Wettlaufer, J. S.
2015
Tailoring boundary geometry to optimize heat transport in turbulent convection. Europhys. Lett.
111 (4), 44005.

Ulvrová, M., Labrosse, S., Coltice, N., Råback, P. & Tackley, P. J.
2012
Numerical modelling of convection interacting with a melting and solidification front: application to the thermal evolution of the basal magma ocean. Phys. Earth Planet. Inter.
206–207, 51–66.

Vasil, G. M. & Proctor, M. R. E.
2011
Dynamic bifurcations and pattern formation in melting-boundary convection. J. Fluid Mech.
686, 77–108.

Venezian, G.
1969
Effect of modulation on the onset of thermal convection. J. Fluid Mech.
35 (2), 243–254.

Verhoeven, J., Wiesehöfer, T. & Stellmach, S.
2015
Anelastic versus fully compressible turbulent Rayleigh–Bénard convection. Astrophys. J.
805 (1), 62.

Voller, V. R., Swaminathan, C. R. & Thomas, B. G.
1990
Fixed grid techniques for phase change problems: a review. Intl J. Numer. Meth. Engng
30 (4), 875–898.

Walton, I. C.
1982
On the onset of Rayleigh–Bénard convection in a fluid layer of slowly increasing depth. Stud. Appl. Maths
67 (3), 199–216.

Wang, S.-L., Sekerka, R. F., Wheeler, A. A., Murray, B. T., Coriell, S. R., Braun, R. J. & McFadden, G. B.
1993
Thermodynamically-consistent phase-field models for solidification. Physica D
69 (1), 189–200.

Weiss, S., Seiden, G. & Bodenschatz, E.
2014
Resonance patterns in spatially forced Rayleigh–Bénard convection. J. Fluid Mech.
756, 293–308.

Woods, A. W.
1992
Melting and dissolving. J. Fluid Mech.
239, 429–448.

Worster, M. G.
2000
Solidification of fluids. In Perspectives in Fluid Dynamics: A Collective Introduction to Current Research (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), Cambridge University Press.

Zhang, Y.-Z., Sun, C., Bao, Y. & Zhou, Q.
2018
How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J. Fluid Mech.
836, R2.