Skip to main content

Recurrence of travelling waves in transitional pipe flow

  • R. R. KERSWELL (a1) and O. R. TUTTY (a2)

The recent theoretical discovery of families of unstable travelling-wave solutions in pipe flow at Reynolds numbers lower than the transitional range, naturally raises the question of their relevance to the turbulent transition process. Here, a series of numerical experiments are conducted in which we look for the spatial signature of these travelling waves in transitionary flows. Working within a periodic pipe of 5D (diameters) length, we find that travelling waves with low wall shear stresses (lower branch solutions) are on a surface in phase space which separates initial conditions which uneventfully relaminarize and those which lead to a turbulent evolution. This dividing surface (a separatrix if turbulence is a sustained state) is then minimally the union of the stable manifolds of all these travelling waves. Evidence for recurrent travelling-wave visits is found in both 5D and 10D long periodic pipes, but only for those travelling waves with low-to-intermediate wall shear stress and for less than about 10% of the time in turbulent flow at Re = 2400. Given this, it seems unlikely that the mean turbulent properties such as wall shear stress can be predicted as an expansion solely over the travelling waves in which their individual properties are appropriately weighted. Instead the onus is on isolating further dynamical structures such as periodic orbits and including them in any such expansion.

Hide All
Artuso, R., Aurell, E. & Cvitanovic, P. 1990 a Recycling of strange sets: I cycle expansions. Nonlinearity 3, 325360.
Artuso, R., Aurell, E. & Cvitanovic, P. 1990 b Recycling of strange sets: II applications. Nonlinearity 3, 361386.
Clever, R. M. & Busse, F. H. 1992 Three-dimensional convection in a horizontal fluid layer subjected to a constant shear. J. Fluid Mech. 234, 511527.
Clever, R. M. & Busse, F. H. 1997 Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137153.
Cvitanovic, P. 1988 Invariant measurement of strange sets in terms of cycles. Phys. Rev. Lett. 61, 27292732.
Eckhardt, B., Faisst, H., Schmiegel, A. & Schumacher, J. 2002 Turbulence transition in shear flows. Advances in Turbulence IX: Proceedings of the Ninth European Turbulence Conference, Barcelona (ed. Castro, I. P., Hancock, P. E. & Thomas, T. G.), p. 701.
Eckhardt, B., Schneider, T., Hof, B. & Westerweel, J. 2007 Turbulence transition in pipe flow. Annu. Rev. Fluid Mech. 39, 447468.
Eggels, J. G. M., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.
Faisst, H. & Eckhardt, B. 2004 Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343352.
Hof, B., vanDoorne, C. W. H. Doorne, C. W. H., Westerweel, J., Nieustadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305, 15941597.
Hof, B., vanDoorne, C. W. H. Doorne, C. W. H., Westerweel, J. & Nieuwstadt, F. T. M. 2005 Turbulence regeneration in pipe flow at moderate Reynolds numbers Phys. Rev. Lett. 95, 214502.
Hof, B., Westerweel, J., Schneider, T. M. & Eckhardt, B. 2006 Finite lifetime of turbulence in shear flows. Nature 443, 5962.
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70, 703716.
Jiménez, J. & Simens, M. P. 2001 Low-dimensional dynamics in a turbulent wall flow. J. Fluid Mech. 435, 8191.
Jiménez, J., Kawahara, G., Simens, M. P., Nagata, M. & Shiba, M. 2005 Characterization of near-wall turbulence in terms of equilibrium and ‘bursting’ solutions. Phys. Fluids 17, 015105.
Kawahara, G. 2005 Laminarization of minimal plane Couette Flow: Going beyond the basin of attraction of turbulence. Phys. Fluids 17, 041702.
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18, R17R44.
Lagha, M. & Manneville, P. 2007 Modeling transitional plane Couette flow. Eur. Phys. J. (submitted).
Nagata, M. 1990 Three-dimensional finite-amplitude solutions to plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519527.
Nikitin, N. 2006 Third-order-accurate semi-implicit Runge–Kutta scheme for incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 51, 221233.
Orszag, S. A. & Kells, L. C. 1980 J. Fluid Mech. 96, 159205.
Peixinho, J. & Mullin, T. 2006 Decay of turbulence in pipe flow. Phys. Rev. Lett. 96, 094501.
Pringle, C. & Kerswell, R. R. 2007 Asymmetric, helical and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. (submitted) (arXiv:physics/0703210).
Schlichting, H. 1968 Boundary Layer Theory. McGraw-Hill.
Schmiegel, A. 1999 Transition to turbulence in linearly stable shear flows. PhD thesis Philipps–Universitat Marburg.
Schmiegel, A. & Eckhardt, B. 1997 Fractal stability border in plane Couette flow. Phys. Rev. Lett. 277, 197225.
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007 Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E (submitted).
Skufca, J., Yorke, J. A. & Eckhardt, B. 2006 The edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96, 174101.
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.
vanVeen, L. Veen, L., Kida, S. & Kawahara, G. 2006 Periodic motion representing isotropic turbulence. Fluid Dyn. Res. 38, 1946.
Waleffe, F. 1998 Three dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81, 41404143.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 508, 333371.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 15171534.
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.
Willis, A. P. & Kerswell, R. R. 2007 Critical behaviour in the relaminarisation of localised turbulence in pipe flow. Phys. Rev. Lett. 98, 014501.
Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281351.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 54 *
Loading metrics...

Abstract views

Total abstract views: 155 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th March 2018. This data will be updated every 24 hours.