Skip to main content Accessibility help

Recursive dynamic mode decomposition of transient and post-transient wake flows

  • Bernd R. Noack (a1) (a2), Witold Stankiewicz (a3), Marek Morzyński (a3) and Peter J. Schmid (a4)


A novel data-driven modal decomposition of fluid flow is proposed, comprising key features of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The first mode is the normalized real or imaginary part of the DMD mode that minimizes the time-averaged residual. The $N$ th mode is defined recursively in an analogous manner based on the residual of an expansion using the first $N-1$ modes. The resulting recursive DMD (RDMD) modes are orthogonal by construction, retain pure frequency content and aim at low residual. Recursive DMD is applied to transient cylinder wake data and is benchmarked against POD and optimized DMD (Chen et al., J. Nonlinear Sci., vol. 22, 2012, pp. 887–915) for the same snapshot sequence. Unlike POD modes, RDMD structures are shown to have purer frequency content while retaining a residual of comparable order to POD. In contrast to DMD, with exponentially growing or decaying oscillatory amplitudes, RDMD clearly identifies initial, maximum and final fluctuation levels. Intriguingly, RDMD outperforms both POD and DMD in the limit-cycle resolution from the same snapshots. Robustness of these observations is demonstrated for other parameters of the cylinder wake and for a more complex wake behind three rotating cylinders. Recursive DMD is proposed as an attractive alternative to POD and DMD for empirical Galerkin models, in particular for nonlinear transient dynamics.


Corresponding author

Email address for correspondence:


Hide All
Bagheri, S. 2013 Koopman-mode decomposition of the cylinder wake. J. Fluid Mech. 726, 596623.
Barkley, D. & Henderson, R. D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.
Bergmann, M. & Cordier, L. 2008 Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced order models. J. Comput. Phys. 227, 78137840.
Bourgeois, J. A., Martinuzzi, R. J. & Noack, B. R. 2013 Generalised phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake. J. Fluid Mech. 736, 316350.
Brunton, S. L. & Noack, B. R. 2015 Closed-loop turbulence control: progress and challenges. Appl. Mech. Rev. 67 (5), 050801.
Chen, K. K., Tu, J. H. & Rowley, C. W. 2012 Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses. J. Nonlinear Sci. 22 (6), 887915.
Coats, C. M. 1997 Coherent structures in combustion. Prog. Energy Combust. Sci. 22, 427509.
Courant, R. & Hilbert, D. 1989 Methods of Mathematical Physics, vol. 1. Wiley-VCH.
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.
Fletcher, C. A. J. 1984 Computational Galerkin Methods, 1st edn. Springer.
Föppl, L. 1913 Wirbelbewegung hinter einen Kreiszylinder (transl.: vortex motion behind a circular cylinder). Sitzb. d. k. bayr. Akad. d. Wiss. 1, 118.
Galerkin, B. G. 1915 Rods and plates: series occurring in various questions regarding the elastic equilibrium of rods and plates (translated). Vestn. Inzhen. 19, 897908.
Gerhard, J., Pastoor, M., King, R., Noack, B. R., Dillmann, A., Morzyński, M. & Tadmor, G. 2003 Model-based control of vortex shedding using low-dimensional Galerkin models. In 33rd AIAA Fluids Conference and Exhibit, Orlando, Florida, USA, Paper 2003-4262.
Han, Z.-H., Stefan, G. & Zimmermann, R. 2013 Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function. Aerosp. Sci. Technol. 25 (1), 177189.
Hoarau, C., Borée, J., Laumonier, J. & Gervais, Y. 2006 Analysis of the wall pressure trace downstream of a separated region using extended proper orthogonal decomposition. Phys. Fluids 18, 055107.
Holmes, P., Lumley, J. L. & Berkooz, G. 1998 Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1st edn. Cambridge University Press.
Jørgensen, B. H., Sørensen, J. N. & Brøns, M. 2003 Low-dimensional modeling of a driven cavity flow with two free parameters. Theor. Comput. Fluid Dyn. 16, 299317.
von Kármán, T. & Rubach, H. 1912 Über den Mechanismus des Flüssigkeits- und Luftwiderstandes. Phys. Zeitschr. XIII, 4959.
Lorenz, E. N. 1956 Empirical orthogonal functions and statistical weather prediction. Tech. Rep.. MIT, Department of Meteorology, Statistical Forecasting Project.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.
Lugt, H. J. 1995 Vortex Flow in Nature and Technology. Krieger Publishing Company.
Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178.
Mezić, I. 2013 Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45, 367378.
Noack, B. R. 2016 From snapshots to modal expansions – bridging low residuals and pure frequencies. J. Fluid Mech. 802, 14.
Noack, B. R., Afanasiev, K., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.
Noack, B. R., Pelivan, I., Tadmor, G., Morzyński, M. & Comte, P. 2004 Robust low-dimensional Galerkin models of natural and actuated flows. In Fourth Aeroacoustics Workshop, pp. 00010012. RWTH Aachen.
Oberleithner, K., Sieber, M., Nayeri, C. N., Paschereit, C. O., Petz, C., Hege, H.-C., Noack, B. R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.
Orszag, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries: accuracy. J. Fluid Mech. 49, 75112.
Rom-Kedar, V., Leonard, A. & Wiggins, S. 1990 An analytical study of transport, mixing and chaos in unsteady vortical flow. J. Fluid Mech. 214, 347394.
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 645, 115127.
Schlegel, M., Noack, B. R., Jordan, P., Dillmann, A., Gröschel, E., Schröder, W., Wei, M., Freund, J. B., Lehmann, O. & Tadmor, G. 2012 On least-order flow representations for aerodynamics and aeroacoustics. J. Fluid Mech. 697, 367398.
Schmid, P. J. 2010 Dynamic mode decomposition for numerical and experimental data. J. Fluid. Mech 656, 528.
Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 1753.
Sieber, M., Paschereit, C. O. & Oberleithner, K. 2016 Spectral proper orthogonal decomposition. J. Fluid Mech. 792, 798828.
Siegel, S. G., Seidel, J., Fagley, C., Luchtenburg, D. M., Cohen, K. & Mclaughlin, T. 2008 Low dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid Mech. 610, 142.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I: coherent structures. Q. Appl. Maths XLV, 561571.
Suh, Y. K. 1993 Periodic motion of a point vortex in a corner subject to a potential flow. J. Phys. Soc. Japan 62, 34413445.
Taylor, C. & Hood, P 1973 A numerical solution of the Navier–Stokes equations using the finite element technique. Comput. Fluids 1 (1), 73100.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477539.
Zebib, A. 1987 Stability of viscous flow past a circular cylinder. J. Engng Maths 21, 155165.
Zhang, H.-Q., Fey, U., Noack, B. R., König, M. & Eckelmann, H. 1995 On the transition of the cylinder wake. Phys. Fluids 7 (4), 779795.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Recursive dynamic mode decomposition of transient and post-transient wake flows

  • Bernd R. Noack (a1) (a2), Witold Stankiewicz (a3), Marek Morzyński (a3) and Peter J. Schmid (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.