Skip to main content
×
Home
    • Aa
    • Aa

Reduced-order precursors of rare events in unidirectional nonlinear water waves

  • Will Cousins (a1) and Themistoklis P. Sapsis (a1)
Abstract

We consider the problem of short-term prediction of rare, extreme water waves in irregular unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the linear dispersive mixing of different harmonics, can grow significantly due to modulation instability. Here we show how the interplay between (i) modulation instability properties of localized wave groups and (ii) statistical properties of wave groups that follow a given spectrum defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the ‘trigger’ of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves, circumventing the need for solving the governing equations. Specifically, we show that by merely tracking the energy of the wave field over the critical length scale allows for the robust, inexpensive prediction of the location of intense waves with a prediction window of 25 wave periods. We demonstrate our results in numerical experiments of unidirectional water wave fields described by the modified nonlinear Schrödinger equation. The presented approach introduces a new paradigm for understanding and predicting intermittent and localized events in dynamical systems characterized by uncertainty and potentially strong nonlinear mechanisms.

Copyright
Corresponding author
Email address for correspondence: sapsis@mit.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

T. A. A. Adcock  & P. H. Taylor 2009 Focusing of unidirectional wave groups on deep water: an approximate nonlinear Schrödinger equation-based model. Proc. R. Soc. Lond. A 465, 30833102.

M.-R. Alam 2014 Predictability horizon of oceanic rogue waves. Geophys. Res. Lett. 41 (23), 84778485.

I. E. Alber 1978 The effects of randomness on the stability of two-dimensional surface wavetrains. Proc. R. Soc. Lond. A 363 (1715), 525546.

P. Boccotti 1983 Some new results on statistical properties of wind waves. Appl. Ocean Res. 5 (3), 134140.

P. Boccotti 2008 Quasideterminism theory of sea waves. J. Offshore Mech. Arctic Engng 130 (4), 41102.

A. Chabchoub , N. Hoffmann , M. Onorato , G. Genty , J. M. Dudley  & N. Akhmediev 2013 Hydrodynamic supercontinuum. Phys. Rev. Lett. 111 (5), 054104.

A. Chabchoub , N. P. Hoffmann  & N. Akhmediev 2011 Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106 (20), 204502.

W. Choi  & R. Camassa 1999 Exact evolution equations for surface waves. J. Engng Mech. ASCE 125 (7), 756760.

W. Cousins  & T. P. Sapsis 2015 The unsteady evolution of localized unidirectional deep water wave groups. Phys. Rev. E 91, 063204.

S. M. Cox  & P. C. Matthews 2002 Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2), 430455.

W. Craig  & C. Sulem 1993 Numerical simulation of gravity waves. J. Comput. Phys. 108 (1), 7383.

D. R. Crawford , P. G. Saffman  & H. C. Yuen 1980 Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion 2 (1), 116.

A. Dyachenko  & V. Zakharov 2011 Compact equation for gravity waves on deep water. JETP Lett. 93 (12), 701705.

A. I. Dyachenko , E. A. Kuznetsov , M. D. Spector  & V. E. Zakharov 1996 Analytical description of the free surface dynamics of an ideal fluid (canonical formalism and conformal mapping). Phys. Lett. A 221 (1), 7379.

F. Fedele 2008 Rogue waves in oceanic turbulence. Physica D 237 (14), 21272131.

A. Goullet  & W. Choi 2011 A numerical and experimental study on the nonlinear evolution of long-crested irregular waves. Phys. Fluids 23 (1), 16601.

K. L. Henderson , D. H. Peregrine  & J. W. Dold 1999 Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341361.

A. L. Islas  & C. M. Schober 2005 Predicting rogue waves in random oceanic sea states. Phys. Fluids 17, 031701.

P. A. E. M. Janssen 2003 Nonlinear four-wave interactions and freak waves. J. Phys. Oceanogr. 33 (4), 863884.

V. Lucarini , D. Faranda  & J. Wouters 2012 Universal behaviour of extreme value statistics for selected observables of dynamical systems. J. Stat. Phys. 147 (1), 6373.

V. Lucarini , D. Faranda , J. Wouters  & T. Kuna 2014 Towards a general theory of extremes for observables of chaotic dynamical systems. J. Stat. Phys. 154 (3), 723750.

P. Müller , C. Garrett  & A. Osborne 2005 Meeting Report – Rogue Waves. The Fourteenth ’Aha Huliko’a Hawaiian Winter Workshop. Oceanography 18 (3), 6675.

M. Onorato , A. R. Osborne  & M. Serio 2002a Extreme wave events in directional, random oceanic states. Phys. Fluids 14 (4), L25.

M. Onorato , A. R. Osborne , M. Serio , D. Resio , A. Pushkarev , V. E. Zakharov  & C. Brandini 2002b Freely decaying weak turbulence for sea surface gravity waves. Phys. Rev. Lett. 89 (14), 144501.

A. R. Osborne , M. Onorato  & M. Serio 2000 The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Phys. Lett. A 275 (5), 386393.

K. Trulsen  & K. B. Dysthe 1996 A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion 24 (3), 281289.

G. X. Wu , Q. W. Ma  & R. Eatock Taylor 1998 Numerical simulation of sloshing waves in a 3D tank based on a finite element method. Appl. Ocean Res. 20 (6), 337355.

H. C. Yuen  & W. E. Fergusen 1978 Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation. Phys. Fluids 21 (8), 1275.

V. E. Zakharov 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9 (2), 190194.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 4
Total number of PDF views: 78 *
Loading metrics...

Abstract views

Total abstract views: 594 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd June 2017. This data will be updated every 24 hours.