Hostname: page-component-76c49bb84f-t7r7g Total loading time: 0 Render date: 2025-07-04T07:02:48.295Z Has data issue: false hasContentIssue false

Refinements in the nonlinear term of a turbulence predictive model based on atmospheric surface layer observations

Published online by Cambridge University Press:  14 May 2025

Wansong Xiao
Affiliation:
Center for Particle-Laden Turbulence, Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, PR China Department of Civil Engineering, Loudi Vocational and Technical College, Loudi 417000, PR China
Hongyou Liu*
Affiliation:
Center for Particle-Laden Turbulence, Key Laboratory of Mechanics on Disaster and Environment in Western China, Ministry of Education, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, PR China
*
Corresponding author: Hongyou Liu, liuhongyou@lzu.edu.cn

Abstract

The recently proposed near-wall turbulence predictive model quantifies the degree of the superposition and the amplitude modulation exerted by large-scale coherent structures on small scales in the linear and nonlinear terms of the formula, respectively, and achieves the prediction of streamwise velocity in the inner region. However, the multiscale effect and the time shift confirmed in the amplitude modulation have not yet been simultaneously taken into account in the model, which could limit the prediction accuracy especially at high Reynolds numbers. In this study, the role of the nonlinear term in the model is clarified based on high-quality flow data obtained in atmospheric surface layers: it redistributes the energy of the universal signal in the time domain and determines the accuracy of the predictive odd moments. An analysis of the multiscale effect and the time shifts in the nonlinear term is subsequently conducted, followed by a demonstration of the refinement in the quality of the universal signal after separately incorporating them into the model. The amplitude modulation is revealed when the two factors are simultaneously considered, and profiles of the scales that dominate the modulation and time shifts with height is provided. Thus, the nonlinear term of the existing model is modified, proposing an polished scheme that can quantify the nonlinear modulation terms more accurately.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, H., Kawamura, H. & Choi, H. 2004 Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to Re τ = 640. J. Fluids Eng. 126 (5), 835843.CrossRefGoogle Scholar
Adrian, R.J. 2010 Closing in on models of wall turbulence. Science 329 (5988), 155156.CrossRefGoogle Scholar
Adrian, R.J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559–559.CrossRefGoogle Scholar
Agostini, L. & Leschziner, M.A. 2014 On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26 (7), 075107.CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2016 Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids 1 (5), 054406.CrossRefGoogle Scholar
Baars, W.J., Talluru, K.M., Hutchins, N. & Marusic, I. 2015 Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56 (10), 188.CrossRefGoogle Scholar
Bagnold, R. 1941 The Physics of Blown Sand and Desert Dunes. ISBN-978-94-009-5684-1.Google Scholar
Bandyopadhyay, P.R. & Hussain, A.K.M.F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 22212228.CrossRefGoogle Scholar
Blackman, K. & Perret, L. 2016 Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation. Phys. Fluids 28 (9), 095108. arXiv: https://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/1.4962938/14834673/095108_1_online.pdf.CrossRefGoogle Scholar
Bonnet, J.P. et al. 1998 Collaborative testing of eddy structure identification methods in free turbulent shear flows. Exp. Fluids 25 (3), 197225.CrossRefGoogle Scholar
Brown, G.L. & Thomas, A.S.W. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20 (10), S243S252.CrossRefGoogle Scholar
Chernyshenko, S., Marusic, I. & Mathis, R. 2012 Quasi-steady description of modulation effects in wall turbulence. arXiv: Fluid Dyn. https://api.semanticscholar.org/CorpusID:116889348Google Scholar
Chung, D. & McKeon, B.J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364–364.CrossRefGoogle Scholar
Clauser, F.H. 1956 The turbulent boundary layer. In Advances in Applied Mechanics, Advances in Applied Mechanics, vol. 4, pp. 151. Elsevier.Google Scholar
Dennis, D.J.C. 2015 Coherent structures in wall-bounded turbulence. Anais da Academia Brasileira de Ciências 87 (2), 11611193.CrossRefGoogle ScholarPubMed
Deshpande, R., Chandran, D., Monty, J.P. & Marusic, I. 2020 Two-dimensional cross-spectrum of the streamwise velocity in turbulent boundary layers. J. Fluid Mech. 890, R2.CrossRefGoogle Scholar
Duvvuri, S. & McKeon, B.J. 2015 Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech. 767, R4.CrossRefGoogle Scholar
Eitel-Amor, G., Örlü, R. & Schlatter, P. 2014 Simulation and validation of a spatially evolving turbulent boundary layer up to Re θ = 8300. Intl J. Heat Fluid Flow 47, 5769.CrossRefGoogle Scholar
Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B. & Munger, W. 2004 Post-field data quality control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, (ed. Lee, X., Massman, W. & Law, B.), pp. 181208. Springer.Google Scholar
Ganapathisubramani, B., Hutchins, N., Monty, J.P., Chung, D. & Marusic, I. 2012 Amplitude and frequency modulation in wall turbulence. J. Fluid Mech. 712, 6191–91.CrossRefGoogle Scholar
Guala, M., Metzger, M. & McKeon, B.J. 2011 Interactions within the turbulent boundary layer at high Reynolds number. J. Fluid Mech. 666, 573604.CrossRefGoogle Scholar
Han, G.W., Liu, L., Bo, T.L. & Zheng, X.J. 2019 A predictive model for the streamwise velocity in the near-neutral atmospheric surface layer. J. Geophys. Res. Atmos. 124 (1), 238251.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365 (1852), 647664.CrossRefGoogle ScholarPubMed
Hutchins, N., Monty, J.P., Ganapathisubramani, B., H.C.H., N.G. & Marusic, I. 2011 Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 673, 255285.CrossRefGoogle Scholar
Iacobello, G., Ridolfi, L. & Scarsoglio, S. 2021 Large-to-small scale frequency modulation analysis in wall-bounded turbulence via visibility networks. J. Fluid Mech. 918, A13.CrossRefGoogle Scholar
Jacobi, I. & McKeon, B.J. 2013 Phase relationships between large and small scales in the turbulent boundary layer. Exp. Fluids 54 (3), 1481.CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.CrossRefGoogle Scholar
Kaimal, J.C., Wyngaard, J., Izumi, Y. & Cotéor, 1972 Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98 (417), 563589.Google Scholar
Liu, H., Bo, T. & Liang, Y. 2017 The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys. Fluids 29 (3), 035104.CrossRefGoogle Scholar
Liu, H., He, X. & Zheng, X. 2023 Amplitude modulation in particle-laden atmospheric surface layers. J. Fluid Mech. 957, A14.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2019 Amplitude modulation between multi-scale turbulent motions in high-reynolds-number atmospheric surface layers. J. Fluid Mech. 861, 585607.CrossRefGoogle Scholar
Marusic, I., Mathis, R. & Hutchins, N. 2010 a Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.CrossRefGoogle ScholarPubMed
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 b Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Marusic, I., Monty, J.P., Hultmark, M. & Smits, A.J. 2013 On the logarithmic region in wall turbulence. J. Fluid Mech. 716, R3.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337–337.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2011 A predictive innerouter model for streamwise turbulence statistics in wall-bounded flows. J. Fluid Mech. 681, 537566–566.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Chernyshenko, S.I. & Hutchins, N. 2013 Estimating wall-shear-stress fluctuations given an outer region input. J. Fluid Mech. 715, 163180–180.CrossRefGoogle Scholar
Nieuwstadt, F.T.M. 1984 The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci. 41 (14), 22022216.2.0.CO;2>CrossRefGoogle Scholar
Oh, S., Lee, S., Son, M., Kim, J. & Ki, H. 2022 Accurate prediction of the particle image velocimetry flow field and rotor thrust using deep learning. J. Fluid Mech. 939, A2.CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1982 On the mechanism of wall turbulence. J. Fluid Mech. 119, 173217–217.CrossRefGoogle Scholar
Pope, S.B. 1985 PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (2), 119192.CrossRefGoogle Scholar
Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H. & Henningson, D.S. 2009 Turbulent boundary layers up to Re θ = 2500 studied through simulation and experiment. Phys. Fluids 21 (5), 051702.CrossRefGoogle Scholar
Schmekel, D., Alcántara-Ávila, F., Hoyas, S. & Vinuesa, R. 2022 Predicting coherent turbulent structures via deep learning. Frontiers Phys. 10, 888832.CrossRefGoogle Scholar
Talluru, K.M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar
Thomas, A.S.W. & Bull, M.K. 1983 On the role of wall-pressure fluctuations in deterministic motions in the turbulent boundary layer. J. Fluid Mech. 128 (-1), 283.CrossRefGoogle Scholar
Tracy, C.R., Welch, W.R. & Porter, W.P. 1980 Properties of air: a manual for use in biophysical ecology. Tech. Rep. 1.Department of Zoology, University of Wisconsin.Google Scholar
Tsuji, Y., Marusic, I. & Johansson, A.V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.CrossRefGoogle Scholar
Vallikivi, M., Hultmark, M. & Smits, A.J. 2015 Turbulent boundary layer statistics at very high Reynolds number. J. Fluid Mech. 779, 371389.CrossRefGoogle Scholar
Wang, G. & Zheng, X. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wilczak, J.M., Oncley, S.P. & Stage, S.A. 2001 Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99 (1), 127150.CrossRefGoogle Scholar
Wyngaard, J.C. 1992 Atmospheric turbulence. Annu. Rev. Fluid Mech. 24 (1), 205234.CrossRefGoogle Scholar
Yin, G., Huang, W.-X. & Xu, C.-X. 2017 On near-wall turbulence in minimal flow units. Intl J. Heat Fluid Flow 65, 192199.CrossRefGoogle Scholar
Zhang, C. & Chernyshenko, S.I. 2016 Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1 (1), 014401.CrossRefGoogle Scholar
Zheng, X.J. & Bo, T.L. 2022 Representation model of wind velocity fluctuations and saltation transport in aeolian sand flow. J. Wind Engng Indust. Aerodyn. 220, 104846.CrossRefGoogle Scholar