Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X., Lohse, D., Stevens, R. J. A. M. & Verzicco, R.
2012
Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett.
109 (11), 114501.10.1103/PhysRevLett.109.114501
Antonia, R. A. & Orlandi, P.
2003
Effect of Schmidt number on small-scale passive scalar turbulence. Appl. Mech. Rev.
56 (6), 615–632.10.1115/1.1581885
Bryan, G. H., Wyngaard, J. C. & Fritsch, J. M.
2003
Resolution requirements for the simulation of deep moist convection. Mon. Weath. Rev.
131 (10), 2394–2416.10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2
Burattini, P., Antonia, R. A. & Danaila, L.
2005
Scale-by-scale energy budget on the axis of a turbulent round jet. J. Turbul. (6), N19.10.1080/14685240500213744
Cabot, W. H.
1993
Large eddy simulations of time-dependent and buoyancy-driven channel flows. Annual Research Briefs 1992. pp. 45–60. CTR Annual Research Briefs (Center for Turbulence Research, Stanford University/NASA Ames).
Chillà, F. & Schumacher, J.
2012
New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E
35 (7), 1–25.
Cimarelli, A. & De Angelis, E.
2011
Analysis of the Kolmogorov equation for filtered wall-turbulent flows. J. Fluid Mech.
676, 376–395.10.1017/S0022112011000565
Cimarelli, A. & De Angelis, E.
2012
Anisotropic dynamics and sub-grid energy transfer in wall-turbulence. Phys. Fluids
24 (1), 015102.10.1063/1.3675626
Cimarelli, A. & De Angelis, E.
2014
The physics of energy transfer toward improved subgrid-scale models. Phys. Fluids
26 (5), 055103.10.1063/1.4871902
Cimarelli, A., De Angelis, E. & Casciola, C. M.
2013
Paths of energy in turbulent channel flows. J. Fluid Mech.
715, 436–451.10.1017/jfm.2012.528
Cimarelli, A., De Angelis, E., Jiménez, J. & Casciola, C. M.
2016
Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech.
796, 417–436.10.1017/jfm.2016.275
Corrsin, S.
1951
On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys.
22 (4), 469–473.10.1063/1.1699986
Dabbagh, F., Trias, F. X., Gorobets, A. & Oliva, A.
2016
New subgrid-scale models for large-eddy simulation of Rayleigh–Bénard convection. J. Phys. Conf. Ser.
745 (3), 032041.10.1088/1742-6596/745/3/032041
Dabbagh, F., Trias, F. X., Gorobets, A. & Oliva, A.
2017
A priori study of subgrid-scale features in turbulent Rayleigh–Bénard convection. Phys. Fluids
29 (10), 105103.10.1063/1.5005842
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A.
2001
Turbulent energy scale budget equations in a fully developed channel flow. J. Fluid Mech.
430, 87–109.10.1017/S0022112000002767
Danaila, L., Krawczynski, J. F., Thiesset, F. & Renou, B.
2012
Yaglom-like equation in axisymmetric anisotropic turbulence. Physica D
241 (3), 216–223.10.1016/j.physd.2011.08.011
Davidson, P. A., Pearson, B. R. & Staplehurst, P.
2004
How to describe turbulent energy distributions without the Fourier transform. In Proceedings of the AFMC 15, Sydney, Australia. University of Sydney.
Deardorff, J. W.
1974
Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol.
7 (1), 81–106.10.1007/BF00224974
Domaradzki, J. A., Liu, W., Härtel, C. & Kleiser, L.
1994
Energy transfer in numerically simulated wall-bounded turbulent flows. Phys. Fluids
6, 1583–1599.10.1063/1.868272
Dupuy, D., Toutant, A. & Bataille, F.
2018
Turbulence kinetic energy exchanges in flows with highly variable fluid properties. J. Fluid Mech.
834, 5–54.10.1017/jfm.2017.729
Gauding, M., Wick, A., Pitsch, H. & Peters, N.
2014
Generalised scale-by-scale energy-budget equations and large-eddy simulations of anisotropic scalar turbulence at various Schmidt numbers. J. Turbul.
15 (12), 857–882.10.1080/14685248.2014.935385
Gayen, B., Hughes, G. O. & Griffiths, R. W.
2013
Completing the mechanical energy pathways in turbulent Rayleigh–Benard convection. Phys. Rev. Lett.
111 (12), 124301.10.1103/PhysRevLett.111.124301
Grossmann, S. & Lohse, D.
2000
Scaling in thermal convection: a unifying theory. J. Fluid Mech.
407, 27–56.10.1017/S0022112099007545
Härtel, C., Kleiser, L., Unger, F. & Friedrich, R.
1994
Subgrid-scale energy transfer in the near-wall region of turbulent flows. Phys. Fluids
6 (9), 3130–3143.10.1063/1.868137
Hill, R. J.
2002
Exact second-order structure–function relationships. J. Fluid Mech.
468, 317–326.10.1017/S0022112002001696
Kimmel, S. J. & Domaradzki, J. A.
2000
Large eddy simulations of Rayleigh–Bénard convection using subgrid scale estimation model. Phys. Fluids
12 (1), 169–184.10.1063/1.870292
Kolmogorov, A. N.
1941a
Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR
32, 16–18.
Kolmogorov, A. N.
1941b
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. In Dokl. Akad. Nauk SSSR, vol. 30, pp. 301–305. JSTOR.
Lilly, D. K.
1962
On the numerical simulation of buoyant convection. Tellus
14 (2), 148–172.10.3402/tellusa.v14i2.9537
Lilly, D. K.
1967
The representation of small scale turbulence in numerical simulation experiments. In Proceedings of the IBM Scientific Computing Symposium on Environmental Science, pp. 195–210. IBM.
Liu, S., Meneveau, C. & Katz, J.
1994
On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet. J. Fluid Mech.
275, 83–119.10.1017/S0022112094002296
Lohse, D. & Xia, K.-Q.
2010
Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech.
42, 335–364.10.1146/annurev.fluid.010908.165152
Marati, N., Casciola, C. M. & Piva, R.
2004
Energy cascade and spatial fluxes in wall turbulence. J. Fluid Mech.
521, 191–215.10.1017/S0022112004001818
Mason, P. J.
1989
Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci.
46 (11), 1492–1516.10.1175/1520-0469(1989)046<1492:LESOTC>2.0.CO;2
Obukhov, A. M.1968 Structure of the temperature field in turbulent flow. Tech. Rep. DTIC Document.
Piomelli, U.
1999
Large-eddy simulation: achievements and challenges. Prog. Aerosp. Sci.
35 (4), 335–362.10.1016/S0376-0421(98)00014-1
Piomelli, U. & Balaras, E.
2002
Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech.
34 (1), 349–374.10.1146/annurev.fluid.34.082901.144919
Piomelli, U., Cabot, W. H., Moin, P. & Lee, S.
1991
Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A
3 (7), 1766–1771.10.1063/1.857956
Pope, S. B.2001 Turbulent Flows. Cambridge University Press.
Porté-Agel, F., Parlange, M. B., Meneveau, C. & Eichinger, W. E.
2001
A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci.
58 (18), 2673–2698.10.1175/1520-0469(2001)058<2673:APFSOT>2.0.CO;2
Sergent, A., Joubert, P. & Le Quéré, P.
2006
Large-eddy simulation of turbulent thermal convection using a mixed scale diffusivity model. Prog. Comput. Fluid Dyn.
6 (1-3), 40–49.10.1504/PCFD.2006.009481
Siggia, E. D.
1994
High Rayleigh number convection. Annu. Rev. Fluid Mech.
26 (1), 137–168.10.1146/annurev.fl.26.010194.001033
Smagorinsky, J.
1963
General circulation experiments with the primitive equations. 1. The basic experiment. Mon. Weath. Rev.
91 (3), 99–164.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
Togni, R., Cimarelli, A. & De Angelis, E.
2015
Physical and scale-by-scale analysis of Rayleigh–Bénard convection. J. Fluid Mech.
782, 380–404.10.1017/jfm.2015.547
Valente, P. C. & Vassilicos, J. C.
2015
The energy cascade in grid-generated non-equilibrium decaying turbulence. Phys. Fluids
27 (4), 045103.10.1063/1.4916628
Van Reeuwijk, M., Jonker, H. J. J. & Hanjalić, K.
2005
Identification of the wind in Rayleigh–Bénard convection. Phys. Fluids
17 (5), 051704.10.1063/1.1920350
Yaglom, A. M.
1949
On the local structure of a temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR
69 (6), 743.