Skip to main content Accessibility help
×
Home

Resonance-driven oscillations in a flexible-channel flow with fixed upstream flux and a long downstream rigid segment

  • Feng Xu (a1), John Billingham (a1) and Oliver E. Jensen (a2)

Abstract

Flow driven through a planar channel having a finite-length membrane inserted in one wall can be unstable to self-excited oscillations. In a recent study (Xu, Billingham & Jensen J. Fluid Mech., vol. 723, 2013, pp. 706–733), we identified a mechanism of instability arising when the inlet flux and outlet pressure are held constant, and the rigid segment of the channel downstream of the membrane is sufficiently short to have negligible influence on the resulting oscillations. Here we identify an independent mechanism of instability that is intrinsically coupled to flow in the downstream rigid segment, which becomes prominent when the downstream segment is much longer than the membrane. Using a spatially one-dimensional model of the system, we perform a three-parameter unfolding of a degenerate bifurcation point having four zero eigenvalues. Our analysis reveals how instability is promoted by a 1:1 resonant interaction between two modes, with the resulting oscillations described by a fourth-order amplitude equation. This predicts the existence of saturated sawtooth oscillations, which we reproduce in full Navier–Stokes simulations of the same system.

Copyright

Corresponding author

Email address for correspondence: oliver.jensen@manchester.ac.uk

References

Hide All
Bertram, C. D. & Butcher, K. S. A. 1992 A collapsible-tube oscillator is not readily enslaved to an external resonator. J. Fluids Struct. 6 (2), 163180.
Bertram, C. D. & Tscherry, J. 2006 The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes. J. Fluids Struct. 22 (8), 10291045.
Cai, Z. X. & Luo, X. Y. 2003 A fluid–beam model for flow in a collapsible channel. J. Fluids Struct. 17, 125146.
Chakraborty, D., Prakash, J. R., Friend, J. & Yeo, L. 2012 Fluid-structure interaction in deformable microchannels. Phys. Fluids 24, 102002.
Grotberg, J. B. & Jensen, O. E. 2004 Biofluid mechanics in flexible tubes. Annu. Rev. Fluid Mech. 36, 121147.
Guneratne, J. C. & Pedley, T. J. 2006 High-Reynolds-number steady flow in a collapsible channel. J. Fluid Mech. 569, 151184.
Heil, M. & Hazel, A. L.2006 oomph-lib An object-oriented multi-physics finite-element library. In Fluid-Structure Interaction (ed. M. Schäfer & H.-J. Bungartz), pp. 19–49. Springer (oomph-lib is available as open-source software at http://www.oomph-lib.org).
Heil, M. & Hazel, A. L. 2011 Fluid–structure interaction in internal physiological flows. Annu. Rev. Fluid Mech. 43, 141162.
Holmes, P. J. 1980 Averaging and chaotic motions in forced oscillations. SIAM J. Appl. Maths 38 (1), 6580.
Jensen, O. E. & Heil, M. 2003 High-frequency self-excited oscillations in a collapsible-channel flow. J. Fluid Mech. 481, 235268.
Knowlton, F. P. & Starling, E. H. 1912 The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J. Physiol. 44 (3), 206219.
Kudenatti, R. B., Bujurke, N. M. & Pedley, T. J. 2012 Stability of two-dimensional collapsible-channel flow at high-Reynolds-number. J. Fluid Mech. 705, 371386.
Liu, H. F., Luo, X. Y. & Cai, Z. X. 2012 Stability and energy budget of pressure-driven collapsible channel flows. J. Fluid Mech. 705, 348370.
Luo, X. Y. & Pedley, T. J. 1996 A numerical simulation of unsteady flow in a two-dimensional collapsible channel. J. Fluid Mech. 314, 191225.
Luo, X. Y. & Pedley, T. J. 1998 The effects of wall inertia on flow in a two-dimensional collapsible channel. J. Fluid Mech. 363, 253280.
Luo, X. Y. & Pedley, T. J. 2000 Multiple solutions and flow limitation in collapsible channel flows. J. Fluid Mech. 420, 301324.
Mandre, S. & Mahadevan, L. 2010 A generalised theory of viscous and inviscid flutter. Proc. R. Soc. Lond. A 466, 141156.
Pedley, T. J. 1992 Longitudinal tension variation in collapsible channels - a new mechanism for the breakdown of steady flow. Trans. ASME: J. Biomech. Engng 114 (1), 6067.
Pihler-Puzović, D. & Pedley, T. J. 2013 Stability of high-Reynolds-number flow in a collapsible channel. J. Fluid Mech. 714, 536561.
Stewart, P. S., Heil, M., Waters, S. L. & Jensen, O. E. 2010 Sloshing and slamming oscillations in a collapsible channel flow. J. Fluid Mech. 662, 288319.
Stewart, P. S., Waters, S. L. & Jensen, O. E. 2009 Local and global instabilities of flow in a flexible-walled channel. Eur. J. Mech. (B/Fluids) 28 (4), 541557.
Wang, J. W., Chew, Y. T. & Low, H. T. 2009 Effects of downstream system on self-excited oscillations in collapsible tubes. Commun. Numer. Meth. Engng 25 (5), 429445.
Whittaker, R. J., Heil, M., Boyle, J., Jensen, O. E. & Waters, S. L. 2010a The energetics of flow through a rapidly oscillating tube. Part 2. Application to an elliptical tube. J. Fluid Mech. 648, 123153.
Whittaker, R. J., Heil, M., Jensen, O. E. & Waters, S. L. 2010b Predicting the onset of high-frequency self-excited oscillations in elastic-walled tubes. Proc. R. Soc. Lond.A 466, 36353657.
Whittaker, R. J., Waters, S. L., Jensen, O. E., Boyle, J. & Heil, M. 2010c The energetics of flow through a rapidly oscillating tube. Part 1. General theory. J. Fluid Mech. 648, 83121.
Xu, F., Billingham, J. & Jensen, O. E. 2013 Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux. J. Fluid Mech. 723, 706733.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
VIDEO
Supplementary materials

Xu et al. supplementary movie
A saturated oscillation corresponding to figure 11(a), showing the axial flow field, computed using oomph-lib. The inlet profile is parabolic. The vertical axis is rescaled by a factor of 10. The constriction at the downstream end of the flexible membrane opens more quickly than it closes.

 Video (164 KB)
164 KB

Resonance-driven oscillations in a flexible-channel flow with fixed upstream flux and a long downstream rigid segment

  • Feng Xu (a1), John Billingham (a1) and Oliver E. Jensen (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.