Hostname: page-component-6bb9c88b65-fsdjw Total loading time: 0 Render date: 2025-07-22T06:40:39.563Z Has data issue: false hasContentIssue false

Reverse streaming generated by a free-moving magnet

Published online by Cambridge University Press:  18 July 2025

Aldo Figueroa*
Affiliation:
Secihti-Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Chamilpa, Cuernavaca 62209, Morelos, Mexico Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, Parc de Grandmont, Tours 37200, France
Saúl Piedra
Affiliation:
Secihti-Centro de Ingeniería y Desarrollo Industrial, Querétaro De Arteaga 76125, Mexico
Miguel Piñeirua
Affiliation:
Institut de Recherche sur la Biologie de l’Insecte, Université de Tours, Parc de Grandmont, Tours 37200, France
Sergio Cuevas
Affiliation:
Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos 62580, Mexico
*
Corresponding author: Aldo Figueroa, alfil@uaem.mx

Abstract

Generation of steady streaming vortices is usually accomplished by mechanically vibrating bodies, as occurs in several microfluidic applications for mixing, as well as for transport and handling of microparticles. Here, we propose the generation of streaming from the harmonic electromagnetic forcing of a free-moving circular magnet held afloat on a shallow electrolytic layer, and show that the sense of rotation of steady vortices is the opposite to that of the classical streaming flow. Reverse streaming is attributed to the coupling between the fluid and the free-moving body. Analytical solutions offer a physical rationale for the observed flow dynamics, while numerical simulation reproduces the experimental observations satisfactorily.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmed, D., Mao, X., Shi, J., Juluri, B.K. & Huang, T.J. 2009 A millisecond micromixer via single-bubble-based acoustic streaming. Lab on a Chip 9 (18), 27382741.10.1039/b903687cCrossRefGoogle ScholarPubMed
An, H., Cheng, L. & Zhao, M. 2009 Steady streaming around a circular cylinder in an oscillatory flow. Ocean Engng 36 (36), 10891097.10.1016/j.oceaneng.2009.06.010CrossRefGoogle Scholar
Beltrán, A., Ramos, E., Cuevas, S. & Brøns, M. 2010 Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle. Phys. Rev. E 81 (3), 036309.10.1103/PhysRevE.81.036309CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2020 Shape curvature effects in viscous streaming. J. Fluid Mech. 898, A13.10.1017/jfm.2020.404CrossRefGoogle Scholar
Bhosale, Y., Parthasarathy, T. & Gazzola, M. 2022 Soft streaming – flow rectification via elastic boundaries. J. Fluid Mech. 945, R1.10.1017/jfm.2022.525CrossRefGoogle Scholar
Ceylan, H., Giltinan, J., Kozielski, K. & Sitti, M. 2017 Mobile microrobots for bioengineering applications. Lab on a Chip 17 (10), 17051724.10.1039/C7LC00064BCrossRefGoogle ScholarPubMed
Cuevas, S., Smolentsev, S. & Abdou, M. 2006 Vorticity generation in creeping flow past a magnetic obstacle. Phys. Rev. E 74 (5), 056301.10.1103/PhysRevE.74.056301CrossRefGoogle Scholar
Cui, S., Bhosale, Y. & Gazzola, M. 2024 Three-dimensional soft streaming. J. Fluid Mech. 979, A7.10.1017/jfm.2023.1050CrossRefGoogle Scholar
Domínguez, D.R., Piedra, S. & Ramos, E. 2021 Vortex-induced vibration in a cylinder with an azimuthal degree of freedom. Phys. Rev. Fluids 6 (6), 064701.10.1103/PhysRevFluids.6.064701CrossRefGoogle Scholar
Elston, J.R., Blackburn, H.M. & Sheridan, J. 2006 The primary and secondary instabilities of flow generated by an oscillating circular cylinder. J. Fluid Mech. 550, 359389.10.1017/S0022112005008372CrossRefGoogle Scholar
Figueroa, A., Cuevas, S. & Ramos, E. 2017 Lissajous trajectories in electromagnetically driven vortices. J. Fluid Mech. 815, 415434.10.1017/jfm.2017.55CrossRefGoogle Scholar
Figueroa, A., Demiaux, F., Cuevas, S. & Ramos, E. 2009 Electrically driven vortices in a weak dipolar magnetic field in a shallow electrolytic layer. J. Fluid Mech. 641, 245261.10.1017/S0022112009991868CrossRefGoogle Scholar
Ilin, K. & Sadiq, M. 2010 Steady viscous flows in an annulus between two cylinders produced by vibrations of the inner cylinder. arXiv:1008.4704v2 [physics.flu-dyn]. pp. 129.Google Scholar
Kleischmann, F., Luzzatto-Fegiz, P., Meiburg, E. & Vowinckel, B. 2024 Pairwise interaction of spherical particles aligned in high-frequency oscillatory flow. J. Fluid Mech. 984, A57.10.1017/jfm.2024.251CrossRefGoogle Scholar
Lane, C.A. 1955 Acoustical streaming in the vicinity of a sphere. J. Acoust. Soc. Am. 27 (6), 10821086.10.1121/1.1908126CrossRefGoogle Scholar
Li, P., Nunn, A.R., Brumley, D.R., Sader, J.E. & Collis, J.F. 2024 The propulsion direction of nanoparticles trapped in an acoustic field. J. Fluid Mech. 984, R1.10.1017/jfm.2024.217CrossRefGoogle Scholar
Lieu, V.H., House, T.A. & Schwartz, D.T. 2012 Hydrodynamic tweezers: impact of design geometry on flow and microparticle trapping. Analyt. Chem. 21 (4), 19631968.10.1021/ac203002zCrossRefGoogle Scholar
Longuet-Higgins, M.S. 1998 Viscous streaming from an oscillating spherical bubble. Proc. R. Soc. Lond. A 33 (4), 344357.Google Scholar
Lutz, B.R., Chen, J. & Schwartz, D.T. 2006 Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies. Analyt. Chem. 78 (15), 54295435.10.1021/ac060555yCrossRefGoogle ScholarPubMed
Marmottant, P. 2024 Large vortices from soft vibrations. J. Fluid Mech. 986, F1.10.1017/jfm.2024.271CrossRefGoogle Scholar
Müller, U. & Bühler, L. 2001 Magnetofluiddynamics in Channels and Containers. Springer.10.1007/978-3-662-04405-6CrossRefGoogle Scholar
Panton, R.L. 2024 Incompressible Flows, 5th edn. Wiley.Google Scholar
Parthasarathy, T., Chan, F.K. & Gazzola, M. 2019 Streaming-enhanced flow-mediated transport. J. Fluid Mech. 878, 647662.10.1017/jfm.2019.643CrossRefGoogle Scholar
Piedra, S., Flores, J., Ramírez, G., Figueroa, A., Pineirua, M. & Cuevas, S. 2023 Fluid mixing by an electromagnetically driven floating rotor. Phys. Rev. E 108 (2), 025101.10.1103/PhysRevE.108.025101CrossRefGoogle Scholar
Piedra, S., Ramos, E. & Herrera, J.R. 2015 Dynamics of two-dimensional bubbles. Phys. Rev. E 91 (6), 063013.10.1103/PhysRevE.91.063013CrossRefGoogle ScholarPubMed
Piedra, S., Román, J., Figueroa, A. & Cuevas, S. 2018 Flow produced by a free-moving floating magnet driven electromagnetically. Phys. Rev. Fluids 3 (4), 043702.10.1103/PhysRevFluids.3.043702CrossRefGoogle Scholar
Pradeep, K.S. & Ashoke, D. 2021 A robust sharp interface based immersed boundary framework for moving body problems with applications to laminar incompressible flows. Comput. Maths Appl. 83, 2456.Google Scholar
Prinz, S. 2019 Direct and large-eddy simulations of wall-bounded magnetohydrodynamic flows in uniform and non-uniform magnetic fields. PhD thesis, Institut für Thermo- und Fluiddynamik, Technische Universität Ilmenau.Google Scholar
Prinz, S., Thomann, J., Eichfelder, G., Boeck, T. & Schumacher, J. 2021 Expensive multi-objective optimization of electromagnetic mixing in a liquid metal. Optim. Engng 22 (2), 10651089.10.1007/s11081-020-09561-4CrossRefGoogle Scholar
Raney, W.P., Corelli, J.C. & Westervelt, P.J. 1954 Acoustical streaming in the vicinity of a cylinder. J. Acoust. Soc. Am. 26 (6), 10061014.10.1121/1.1907438CrossRefGoogle Scholar
Riley, N. 1965 Oscillating viscous flows. Mathematika 12 (2), 161175.10.1112/S0025579300005283CrossRefGoogle Scholar
Riley, N. 1967 Oscillatory viscous flows. review and extension. IMA J. Appl. Maths 3 (4), 419434.10.1093/imamat/3.4.419CrossRefGoogle Scholar
Riley, N. 1975 a The steady streaming induced by a vibrating cylinder. J. Fluid Mech. 68 (4), 801812.10.1017/S0022112075001243CrossRefGoogle Scholar
Riley, N. 1975 b Unsteady laminar boundary layers. SIAM Rev. 17 (2), 274297.10.1137/1017033CrossRefGoogle Scholar
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33 (1), 4365.10.1146/annurev.fluid.33.1.43CrossRefGoogle Scholar
Schlichting, H. 1955 Boundary Layer Theory. McGraw-Hill.Google Scholar
Sritharan, K., Strobl, C.J., Schneider, M.F., Wixforth, A. & Guttenberg, Z. 2006 Acoustic mixing at low Reynolds numbers. Appl. Phys. Lett. 88 (5), 054102.10.1063/1.2171482CrossRefGoogle Scholar
Stuart, J.T. 1966 Double boundary layers in oscillatory viscous flow. J. Fluid Mech. 24 (4), 673687.10.1017/S0022112066000910CrossRefGoogle Scholar
Tabakova, S.S. & Zapryanov, Z.D. 1982 On the hydrodynamic interaction of two spheres oscillating in a viscous fluid. I. Axisymmetrical case. Z. Angew. Math. Phys. 33 (4), 344357.10.1007/BF00944443CrossRefGoogle Scholar
Thameem, R., Rallabandi, B. & Hilgenfeldt, S. 2017 Fast inertial particle manipulation in oscillating flows. Phys. Rev. Fluids 2 (5), 052001(R).10.1103/PhysRevFluids.2.052001CrossRefGoogle Scholar
Thielicke, W. & Stamhuis, E.J. 2014 PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2, e30.10.5334/jors.blCrossRefGoogle Scholar
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows, 1st edn. Cambridge University Press.Google Scholar
Van Dyke, M. 1982 An Album of Fluid Motion. Parabolic Press.10.1115/1.3241909CrossRefGoogle Scholar
Wang, C.-Y. 1965 The flow field induced by an oscillating sphere. J. Sound Vib. 2 (3), 257269.10.1016/0022-460X(65)90112-4CrossRefGoogle Scholar
Wang, C.-Y. 1968 On high-frequency oscillatory viscous flows. J. Fluid Mech. 32 (1), 5568.10.1017/S0022112068000583CrossRefGoogle Scholar
Wiklund, M., Green, R. & Ohlin, M. 2012 Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab on a Chip 12 (14), 24382451.10.1039/c2lc40203cCrossRefGoogle ScholarPubMed
Zhang, X., Minten, J. & Rallabandi, B. 2024 Particle hydrodynamics in acoustic fields: unifying acoustophoresis with streaming. Phys. Rev. Fluids 9 (4), 044303.10.1103/PhysRevFluids.9.044303CrossRefGoogle Scholar