Basara, B. & Jakirlic, S.
2003
A new hybrid turbulence modelling strategy for industrial CFD. Intl J. Numer. Meth. Fluids
42 (1), 89–116.10.1002/fld.492

Bernardini, M., Pirozzoli, S. & Orlandi, P.
2014
Velocity statistics in turbulent channel flow up to *Re* = 4000. J. Fluid Mech.
742, 171–191.

Breuer, M., Peller, N., Rapp, C. & Manhart, M.
2009
Flow over periodic hills: numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids
38 (2), 433–457.

Chandrasekaran, S. & Ipsen, I. C. F.
1995
On the sensitivity of solution components in linear systems of equations. SIAM J. Matrix Anal. Applics.
16 (1), 93–112.

Debnath, L. & Mikusiński, P.
2005
Hilbert Spaces with Applications. Academic Press.

Del Alamo, J. C. & Jiménez, J.
2003
Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids
15 (6), L41–L44.

Gamahara, M. & Hattori, Y.
2017
Searching for turbulence models by artificial neural network. Phys. Rev. Fluids
2 (5), 054604.

Geneva, N. & Zabaras, N.
2019
Quantifying model form uncertainty in Reynolds-averaged turbulence models with Bayesian deep neural networks. J. Comput. Phys.
383, 125–147.

Hamlington, P. E. & Dahm, W. J. A.
2008
Reynolds stress closure for nonequilibrium effects in turbulent flows. Phys. Fluids
20 (11), 115101.10.1063/1.3006023

Hamlington, P. E. & Ihme, M.
2014
Modeling of non-equilibrium homogeneous turbulence in rapidly compressed flows. Flow Turbul. Combust.
93 (1), 93–124.

King, R. N., Hamlington, P. E. & Dahm, W. J. A.
2016
Autonomic closure for turbulence simulations. Phys. Rev. E
93 (3), 031301.

Laizet, S. & Lamballais, E.
2009
High-order compact schemes for incompressible flows: a simple and efficient method with quasi-spectral accuracy. J. Comput. Phys.
228 (16), 5989–6015.

Laizet, S. & Li, N.
2011
Incompact3d: a powerful tool to tackle turbulence problems with up to *O* (10^{5}) computational cores. Intl J. Numer. Meth. Fluids
67 (11), 1735–1757.

Lanczos, C.
1996
Linear Differential Operators. SIAM.

Launder, B. E. & Sharma, B. I.
1974
Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transfer
1 (2), 131–137.

Lee, M. & Moser, R. D.
2015
Direct numerical simulation of turbulent channel flow up to *Re* = 5200. J. Fluid Mech.
774, 395–415.

Ling, J., Kurzawski, A. & Templeton, J.
2016
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J. Fluid Mech.
807, 155–166.

Maduta, R. & Jakirlic, S.
2017
Improved RANS computations of flow over the 25^{°} -slant-angle Ahmed body. SAE Intl J. Passenger Cars – Mech. Syst.
10 (2), 649–661.

Maulik, R. & San, O.
2017
A neural network approach for the blind deconvolution of turbulent flows. J. Fluid Mech.
831, 151–181.

Maulik, R., San, O., Rasheed, A. & Vedula, P.
2019
Sub-grid modelling for two-dimensional turbulence using neural networks. J. Fluid Mech.
858, 122–144.

Menter, F. R.
1994
Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J.
32 (8), 1598–1605.

Parish, E. J. & Duraisamy, K.
2016
A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys.
305, 758–774.

Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G.
2010
Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech.
644, 107–122.

Pope, S. B.
1975
A more general effective-viscosity hypothesis. J. Fluid Mech.
72 (2), 331–340.

Pope, S. B.
2000
Turbulent Flows. Cambridge University Press.

Poroseva, S. V., Colmenares, F., Juan, D. & Murman, S. M.
2016
On the accuracy of RANS simulations with DNS data. Phys. Fluids
28 (11), 115102.

Singh, A. P. & Duraisamy, K.
2016
Using field inversion to quantify functional errors in turbulence closures. Phys. Fluids
28, 045110.

Singh, A. P., Medida, S. & Duraisamy, K.
2017
Machine-learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA J.
55 (7), 2215–2227.

Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E. & Mavriplis, D.2014 CFD Vision 2030 Study: a path to revolutionary computational aerosciences. *Tech. Rep.* National Aeronautics and Space Administration, Langley Research Center, Hampton, VA.

Spalart, P. R. & Allmaras, S. R.
1994
A one-equation turbulence model for aerodynamic flows. Rech. Aerosp,
1, 5–21.

Speziale, C. G. & Xu, X.-H.
1996
Towards the development of second-order closure models for nonequilibrium turbulent flows. Intl J. Heat Fluid Flow
17 (3), 238–244.

Steele, J. M.
2004
The Cauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities. Cambridge University Press.

Strang, G.
2016
Introduction to Linear Algebra, 5th edn. Wellesley–Cambridge Press.

Thompson, R. L., Sampaio, L. E. B., de Bragança Alves, F. A. V., Thais, L. & Mompean, G.
2016
A methodology to evaluate statistical errors in DNS data of plane channel flows. Comput. Fluids
130, 1–7.

Vollant, A., Balarac, G. & Corre, C.
2017
Subgrid-scale scalar flux modelling based on optimal estimation theory and machine-learning procedures. J. Turbul.
18 (9), 854–878.

Wang, J.-X., Wu, J.-L. & Xiao, H.
2017
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Phys. Rev. Fluids
2 (3), 034603.

Weatheritt, J. & Sandberg, R.
2016
A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship. J. Comput. Phys.
325, 22–37.

Weller, H. G., Tabor, G., Jasak, H. & Fureby, C.
1998
A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12 (6), 620–631.

Wilcox, D. C.
1988
Reassessment of the scale-determining equation for advanced turbulence models. AIAA J.
26 (11), 1299–1310.

Wu, J.-L., Xiao, H. & Paterson, E.
2018
Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys. Rev. Fluids
3 (7), 074602.

Zhu, L., Zhang, W., Kou, J. & Liu, Y.
2019
Machine learning methods for turbulence modeling in subsonic flows around airfoils. Phys. Fluids
31 (1), 015105.