Skip to main content

The role of body flexibility in stroke enhancements for finite-length undulatory swimmers in viscoelastic fluids

  • Becca Thomases (a1) and Robert D. Guy (a1)

The role of passive body dynamics on the kinematics of swimming micro-organisms in complex fluids is investigated. Asymptotic analysis of small-amplitude motions of a finite-length undulatory swimmer in a Stokes–Oldroyd-B fluid is used to predict shape changes that result as body elasticity and fluid elasticity are varied. Results from the analysis are compared with numerical simulations and the numerically simulated shape changes agree with the analysis at both small and large amplitudes, even for strongly elastic flows. We compute a stroke-induced swimming speed that accounts for the shape changes, but not additional effects of fluid elasticity. Elasticity-induced shape changes lead to larger-amplitude strokes for sufficiently soft swimmers in a viscoelastic fluid, and these stroke boosts can lead to swimming speed-ups. However, for the strokes we examine, we find that additional effects of fluid elasticity generically result in a slow-down. Our high amplitude strokes in strongly elastic flows lead to a qualitatively different regime in which highly concentrated elastic stresses accumulate near swimmer bodies and dramatic slow-downs are seen.

Corresponding author
Email address for correspondence:
Hide All
Balmforth, N. J., Coombs, D. & Pachmann, S. 2010 Microelastohydrodynamics of swimming organisms near solid boundaries in complex fluids. Q. J. Mech. Appl. Maths 63 (3), 267294.
Bird, R. B., Hassager, O., Armstrong, R. C. & Curtiss, C. F. 1980 Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. John Wiley and Sons.
Camalet, S. & Jülicher, F. 2000 Generic aspects of axonemal beating. New J. Phys. 2 (1), 24.
Chaudhury, T. K. 1979 On swimming in a visco-elastic liquid. J. Fluid Mech. 95, 189197.
Cortez, R. 2001 The method of regularized stokeslets. SIAM J. Sci. Comput. 23 (4), 12041225.
Curtis, M. P. & Gaffney, E. A. 2013 Three-sphere swimmer in a nonlinear viscoelastic medium. Phys. Rev. E 87 (4), 043006.
Dasgupta, M., Liu, B., Fu, H. C., Berhanu, M., Breuer, K. S., Powers, T. R. & Kudrolli, A. 2013 Speed of a swimming sheet in Newtonian and viscoelastic fluids. Phys. Rev. E 87 (1), 13015.
Elfring, G. J. & Lauga, E. 2015 Theory of locomotion through complex fluids. In Complex Fluids in Biological Systems, pp. 283317. Springer.
Elfring, G. J. & Goyal, G. 2016 The effect of gait on swimming in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 234, 814.
Espinosa-Garcia, J., Lauga, E., Zenit, R., Diego, S. & Jolla, L. 2013 Fluid elasticity increases the locomotion of flexible swimmers. Phys. Fluids 25 (3), 31701.
Fauci, L. J. & Peskin, C. S. 1988 A computational model of aquatic animal locomotion. J. Comput. Phys. 77 (1), 85108.
Fu, H. C., Powers, T. R. & Wolgemuth, C. W. 2007 Theory of swimming filaments in viscoelastic media. Phys. Rev. Lett. 99 (25), 258101.
Fu, H. C., Wolgemuth, C. W. & Powers, T. R. 2008 Beating patterns of filaments in viscoelastic fluids. Phys. Rev. E 78 (4), 041913.
Fu, H. C., Wolgemuth, C. W. & Powers, T. R. 2009 Swimming speeds of filaments in nonlinearly viscoelastic fluids. Phys. Fluids 21 (3), 33102.
Fulford, G. R., Katz, D. F. & Powell, R. L. 1998 Swimming of spermatozoa in a linear viscoelastic fluid. Biorheology 35 (4), 295309.
Gagnon, D. A., Keim, N. C. & Arratia, P. E. 2014 Undulatory swimming in shear-thinning fluids: experiments with caenorhabditis elegans. J. Fluid Mech. 758, R3.
Godínez, F. A., Koens, L., Montenegro-Johnson, T. D., Zenit, R. & Lauga, E. 2015 Complex fluids affect low-Reynolds number locomotion in a kinematic-dependent manner. Exp. Fluids 56 (5), 110.
Goldstein, R. E. & Langer, S. A. 1995 Nonlinear dynamics of stiff polymers. Phys. Rev. Lett. 75, 10941097.
Guy, R. D. & Thomases, B. 2015 Computational challenges for simulating strongly elastic flows in biology. In Complex Fluids in Biological Systems, pp. 359397. Springer.
Keim, N. C., Garcia, M. & Arratia, P. E. 2012 Fluid elasticity can enable propulsion at low Reynolds number. Phys. Fluids 24 (8), 81703; ISSN 10706631.
Lauga, E. 2007a Floppy swimming: viscous locomotion of actuated elastica. Phys. Fluids 19 (8), 83104.
Lauga, E. 2007b Propulsion in a viscoelastic fluid. Phys. Rev. E 75 (4), 041916.
Li, G. & Ardekani, A. M. 2015 Undulatory swimming in non-newtonian fluids. J. Fluid Mech. 784, R4.
Li, G.-J., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta. 53 (12), 911926.
Liu, B., Powers, T. R. & Breuer, K. S. 2011 Force-free swimming of a model helical flagellum in viscoelastic fluids. Proc. Natl Acad. Sci. USA 108 (49), 1951619520.
Montenegro-Johnson, T. D., Smith, D. J. & Loghin, D. 2013 Physics of rheologically enhanced propulsion: different strokes in generalized Stokes. Phys. Fluids 8, 081903.
Qin, B., Gopinath, A., Yang, J., Gollub, J. P. & Arratia, P. E. 2015 Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Sci. Rep. 5, 9190.
Riley, E. E. & Lauga, E. 2014 Enhanced active swimming in viscoelastic fluids. Europhys. Lett. 108 (3), 34003.
Riley, E. E. & Lauga, E. 2015 Small-amplitude swimmers can self-propel faster in viscoelastic fluids. J. Theor. Biol. 382, 345355.
Salazar, D., Roma, A. M. & Ceniceros, H. D. 2016 Numerical study of an inextensible, finite swimmer in stokesian viscoelastic flow. Phys. Fluids 28 (6), 063101.
Shelley, M. J. & Ueda, T. 2000 The stokesian hydrodynamics of flexing, stretching filaments. Physica D 146 (1), 221245.
Shen, X. N. & Arratia, P. E. 2011 Undulatory swimming in viscoelastic fluids. Phys. Rev. Lett. 106 (20), 208101.
Spagnolie, S. E., Liu, B. & Powers, T. R. 2013 Locomotion of helical bodies in viscoelastic fluids: enhanced swimming at large helical amplitudes. Phys. Rev. Lett. 111 (6), 68101.
Sturges, L. D. 1981 Motion induced by a waving plate. J. Non-Newtonian Fluid Mech. 8 (3–4), 357364.
Sureshkumar, R. & Beris, A. N. 1995 Effect of artificial stress diffusivity on the stability of numerical calculations and the flow dynamics of time-dependent viscoelastic flows. J. Non-Newtonian Fluid Mech. 60 (1), 5380.
Sznitman, J. & Arratia, P. E. 2015 Locomotion through complex fluids: an experimental view. In Complex Fluids in Biological Systems, pp. 245281. Springer.
Teran, J., Fauci, L. & Shelley, M. 2010 Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Phys. Rev. Lett. 104 (3), 38101.
Thomases, B. 2011 An analysis of the effect of stress diffusion on the dynamics of creeping viscoelastic flow. J. Non-Newtonian Fluid Mech. 166 (21–22), 12211228.
Thomases, B. & Guy, R. D. 2014 Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Phys. Rev. Lett. 113 (9), 098102; ISSN 0031-9007.
Wiggins, C. H. & Goldstein, R. E. 1998 Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80 (17), 3879.
Zhu, L., Lauga, E. & Brandt, L. 2012 Self-propulsion in viscoelastic fluids: pushers vs. pullers. Phys. Fluids 24 (5), 51902.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed