Skip to main content Accessibility help

The role of mixed-layer instabilities in submesoscale turbulence

  • Jörn Callies (a1), Glenn Flierl (a1), Raffaele Ferrari (a1) and Baylor Fox-Kemper (a2)


Upper-ocean turbulence at scales smaller than the mesoscale is believed to exchange surface and thermocline waters, which plays an important role in both physical and biogeochemical budgets. But what energizes this submesoscale turbulence remains a topic of debate. Two mechanisms have been proposed: mesoscale-driven surface frontogenesis and baroclinic mixed-layer instabilities. The goal here is to understand the differences between the dynamics of these two mechanisms, using a simple quasi-geostrophic model. The essence of mesoscale-driven surface frontogenesis is captured by the well-known surface quasi-geostrophic model, which describes the sharpening of surface buoyancy gradients and the subsequent breakup in secondary roll-up instabilities. We formulate a similarly archetypical Eady-like model of submesoscale turbulence induced by mixed-layer instabilities. The model captures the scale and structure of this baroclinic instability in the mixed layer. A wide range of scales are energized through a turbulent inverse cascade of kinetic energy that is fuelled by the submesoscale mixed-layer instability. Major differences to mesoscale-driven surface frontogenesis are that mixed-layer instabilities energize the entire depth of the mixed layer and produce larger vertical velocities. The distribution of energy across scales and in the vertical produced by our simple model of mixed-layer instabilities compares favourably to observations of energetic wintertime submesoscale flows, suggesting that it captures the leading-order balanced dynamics of these flows. The dynamics described here in an oceanographic context have potential applications to other geophysical fluids with layers of different stratifications.


Corresponding author

Email address for correspondence:


Hide All
Badin, G. 2012 Surface semi-geostrophic dynamics in the ocean. Geophys. Astrophys. Fluid Dyn. 107 (5), 526540.
Bishop, C. H. 1993a On the behaviour of baroclinic waves undergoing horizontal deformation. I: The ‘RT’ phase diagram. Q. J. R. Meteorol. Soc. 119 (510), 221240.
Bishop, C. H. 1993b On the behaviour of baroclinic waves undergoing horizontal deformation. II: Error-bound amplification and Rossby wave diagnostics. Q. J. R. Meteorol. Soc. 119 (510), 241267.
Blumen, W. 1978 Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci. 35 (5), 774783.
Blumen, W. 1979 On short-wave baroclinic instability. J. Atmos. Sci. 36 (10), 19251933.
Boccaletti, G., Ferrari, R. & Fox-Kemper, B. 2007 Mixed layer instabilities and restratification. J. Phys. Oceanogr. 37 (9), 22282250.
Boyd, J. P. 1992 The energy spectrum of fronts: time evolution of shocks in Burgers’ equation. J. Atmos. Sci. 49 (2), 128139.
Bretherton, F. P. 1966 Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92 (393), 325334.
Bühler, O., Callies, J. & Ferrari, R. 2014 Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech. 756, 10071026.
Callies, J. & Ferrari, R. 2013 Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr. 43 (11), 24562474.
Callies, J., Ferrari, R., Klymak, J. M. & Gula, J. 2015 Seasonality in submesoscale turbulence. Nat. Commun. 6, 6862.
Capet, X., Klein, P., Hua, B. L., Lapeyre, G. & McWilliams, J. C. 2008a Surface kinetic energy transfer in surface quasi-geostrophic flows. J. Fluid Mech. 604, 165174.
Capet, X., McWilliams, J. C., Molemaker, M. J. & Shchepetkin, A. F. 2008b Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests. J. Phys. Oceanogr. 38 (1), 2943.
Capet, X., McWilliams, J. C., Molemaker, M. J. & Shchepetkin, A. F. 2008c Mesoscale to submesoscale transition in the California current system. Part II: frontal processes. J. Phys. Oceanogr. 38 (1), 4464.
Capet, X., McWilliams, J. C., Molemaker, M. J. & Shchepetkin, A. F. 2008d Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. J. Phys. Oceanogr. 38 (10), 22562269.
Charney, J. G. 1947 The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4 (5), 135162.
Charney, J. G. 1971 Geostrophic turbulence. J. Atmos. Sci. 28 (6), 10871095.
Eady, E. T. 1949 Long waves and cyclone waves. Tellus 1 (3), 3352.
Emanuel, K. A. 1994 Atmospheric Convection. Oxford University Press.
Ferrari, R. 2011 A frontal challenge for climate models. Science 332 (6027), 316317.
Ferrari, R. & Rudnick, D. L. 2000 Thermohaline variability in the upper ocean. J. Geophys. Res. 105 (C7), 1685716883.
Fox-Kemper, B., Ferrari, R. & Hallberg, R. W. 2008 Parameterization of mixed layer eddies. Part I: theory and diagnosis. J. Phys. Oceanogr. 38 (6), 11451165.
Garner, S. T., Nakamura, N. & Held, I. M. 1992 Nonlinear equilibration of two-dimensional Eady waves: a new perspective. J. Atmos. Sci. 49 (21), 19841996.
Gill, A. E., Green, J. S. A. & Simmons, A. J. 1974 Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. 21 (7), 499528.
Gula, J., Molemaker, M. J. & McWilliams, J. C. 2015 Gulf stream dynamics along the southeastern U.S. seaboard. J. Phys. Oceanogr. 45 (3), 690715.
Haine, T. W. N. & Marshall, J. 1998 Gravitational, symmetric, and baroclinic instability of the ocean mixed layer. J. Phys. Oceanogr. 28 (4), 634658.
Hakim, G. J., Snyder, C. & Muraki, D. J. 2002 A new surface model for cyclone–anticyclone asymmetry. J. Atmos. Sci. 59 (16), 24052420.
Hamlington, P. E., Van Roekel, L. P., Fox-Kemper, B., Julien, K. & Chini, G. P. 2014 Langmuir–submesoscale interactions: descriptive analysis of multiscale frontal spindown simulations. J. Phys. Oceanogr. 44 (9), 22492272.
Held, I. M., Pierrehumbert, R. T., Garner, S. T. & Swanson, K. L. 1995 Surface quasi-geostrophic dynamics. J. Fluid Mech. 282, 120.
Hoskins, B. J. & Bretherton, F. P. 1972 Atmospheric frontogenesis models: mathematical formulation and solution. J. Atmos. Sci. 29 (1), 1137.
Hoskins, B. J., Draghici, I. & Davies, H. C. 1978 A new look at the ${\it\omega}$ -equation. Q. J. R. Meteorol. Soc. 104 (439), 3138.
Juckes, M. 1994 Quasigeostrophic dynamics of the tropopause. J. Atmos. Sci. 51 (19), 27562768.
Klein, P., Hua, B. L., Lapeyre, G., Capet, X., Le Gentil, S. & Sasaki, H. 2008 Upper ocean turbulence from high-resolution 3D simulations. J. Phys. Oceanogr. 38 (8), 17481763.
Klein, P. & Lapeyre, G. 2009 The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu. Rev. Mater. Sci. 1, 351375.
Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305; (in Russian).
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10 (7), 14171423.
Lapeyre, G. & Klein, P. 2006 Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr. 36 (2), 165176.
Lapeyre, G., Klein, P. & Hua, B. L. 2006 Oceanic restratification forced by surface frontogenesis. J. Phys. Oceanogr. 36 (8), 15771590.
Larichev, V. D. & Held, I. M. 1995 Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 25 (10), 22852297.
Le Traon, P.-Y., Klein, P., Hua, B. L. & Dibarboure, G. 2008 Do altimeter wavenumber spectra agree with the interior or surface quasigeostrophic theory? J. Phys. Oceanogr. 38 (5), 11371142.
Lévy, M., Iovino, D., Resplandy, L., Klein, P., Madec, G., Tréguier, A.-M., Masson, S. & Takahashi, K. 2012 Large-scale impacts of submesoscale dynamics on phytoplankton: local and remote effects. Ocean Model. 43–44, 7793.
Lindzen, R. S. 1994 The Eady problem for a basic state with zero PV gradient but ${\it\beta}\neq 0$ . J. Atmos. Sci. 51 (22), 32213226.
Mahadevan, A. 2014 Eddy effects on biogeochemistry. Nature 506, 168169.
Mahadevan, A. & Tandon, A. 2006 An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Model. 14 (3–4), 241256.
McWilliams, J. C. & Fox-Kemper, B. 2013 Oceanic wave-balanced surface fronts and filaments. J. Fluid Mech. 730, 464490.
McWilliams, J. C., Molemaker, M. J. & Olafsdottir, E. I. 2009 Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr. 39 (12), 31113129.
Mensa, J. A., Garraffo, Z., Griffa, A., Özgökmen, T. M., Haza, A. & Veneziani, M. 2013 Seasonality of the submesoscale dynamics in the Gulf stream region. Ocean Dyn. 63 (8), 923941.
Molemaker, M. J., McWilliams, J. C. & Capet, X. 2010 Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech. 654 (2010), 3563.
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.
Phillips, N. A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (3), 273286.
Pierrehumbert, R. T., Held, I. M. & Swanson, K. L. 1994 Spectra of local and nonlocal two-dimensional turbulence. Chaos, Solitons Fractals 4 (6), 11111116.
Qiu, B. 1999 Seasonal eddy field modulation of the north pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr. 29 (10), 24712486.
Qiu, B. & Chen, S. 2004 Seasonal modulations in the eddy field of the south pacific ocean. J. Phys. Oceanogr. 34 (7), 15151527.
Rhines, P. B. 1977 The dynamics of unsteady currents. In Sea (ed. Goldberg, E.), vol. VI, pp. 189318. Wiley.
Richman, J. G., Arbic, B. K., Shriver, J. F., Metzger, E. J. & Wallcraft, A. J. 2012 Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides. J. Geophys. Res. 117 (C12), C12012.
Rivest, C., Davis, C. A. & Farrell, B. F. 1992 Upper-tropospheric synoptic-scale waves. Part I: maintenance as Eady normal modes. J. Atmos. Sci. 49 (22), 21082119.
Rocha, C. B., Chereskin, T. K., Gille, S. T. & Menemenlis, D.2015 Mesoscale to submesoscale wavenumber spectra in Drake passage. J. Phys. Oceanogr. (in press).
Roullet, G., McWilliams, J. C., Capet, X. & Molemaker, M. J. 2012 Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Oceanogr. 42 (1), 1838.
Salmon, R. 1978 Two-layer quasi-geostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn. 10 (1), 2552.
Sasaki, H., Klein, P., Qiu, B. & Sasai, Y. 2014 Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat. Commun. 5, 5636.
Scott, R. K. 2006 Local and nonlocal advection of a passive scalar. Phys. Fluids 18 (11).
Seiff, A., Kirk, D. B., Knight, T. C. D., Young, R. E., Mihalov, J. D., Young, L. A., Milos, F. S., Schubert, G., Blanchard, R. C. & Atkinson, D. 1998 Thermal structure of Jupiter’s atmosphere near the edge of a $5~{\rm\mu}\text{m}$ hot spot in the north equatorial belt. J. Geophys. Res. Planets 103 (103), E10.
Shcherbina, A. Y., D’Asaro, E. A., Lee, C. M., Klymak, J. M., Molemaker, M. J. & McWilliams, J. C. 2013 Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett. 40 (17), 47064711.
Smith, K. S. & Bernard, E. 2013 Geostrophic turbulence near rapid changes in stratification. Phys. Fluids 25 (4), 046601.
Smith, K. S. & Vallis, G. K. 2001 The scales and equilibration of midocean eddies: freely evolving flow. J. Phys. Oceanogr. 31 (2), 554571.
Smith, K. S. & Vallis, G. K. 2002 The scales and equilibration of midocean eddies: forced–dissipative flow. J. Phys. Oceanogr. 32 (6), 16991720.
Spall, M. A. 1997 Baroclinic jets in confluent flow. J. Phys. Oceanogr. 27 (6), 10541071.
Stone, P. H. 1966a Frontogenesis by horizontal wind deformation fields. J. Atmos. Sci. 23 (5), 455465.
Stone, P. H. 1966b On non-geostrophic baroclinic stability. J. Atmos. Sci. 23 (4), 390400.
Taylor, J. R. & Ferrari, R. 2010 Buoyancy and wind-driven convection at mixed layer density fronts. J. Phys. Oceanogr. 40 (6), 12221242.
Thomas, L. N. & Lee, C. M. 2005 Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr. 35 (6), 10861102.
Thomas, L. N., Tandon, A. & Mahadevan, A. 2008 Submesoscale processes and dynamics. In Ocean Modeling in an Eddying Regime, pp. 1738. American Geophysical Union.
Thomas, L. N., Taylor, J. R., Ferrari, R. & Joyce, T. M. 2013 Symmetric instability in the Gulf stream. Deep-Sea Res. II 91, 96110.
Tulloch, R., Marshall, J., Hill, C. & Smith, K. S. 2011 Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr. 41 (6), 10571076.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Whitt, D. B. & Thomas, L. N. 2015 Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr. 45 (1), 181208.
Xie, J.-H. & Vanneste, J. 2015 A generalised-Lagrangian-mean model of the interactions between near-inertial waves and mean flow. J. Fluid Mech. 774, 143169.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

The role of mixed-layer instabilities in submesoscale turbulence

  • Jörn Callies (a1), Glenn Flierl (a1), Raffaele Ferrari (a1) and Baylor Fox-Kemper (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.