Skip to main content
    • Aa
    • Aa

The role of particle collisions in pneumatic transport

  • M. Y. Louge (a1), E. Mastorakos (a1) and J. T. Jenkins (a2)

We analyse the dilute, steady, fully developed flow of relatively massive particles in a turbulent gas in the context of a vertical pipe. The idea is that the exchange of momentum in collisions between the grains and between the grains and the wall plays a significant role in the balance of forces in the particle phase. Consequently, the particle phase is considered to be a dilute system of colliding grains, in which the velocity fluctuations are produced by collisions rather than by the gas turbulence. The balance equations for rapid granular flow are modified to incorporate the drag force from the gas, and boundary conditions, based on collisional exchanges of momentum and energy at the wall, are employed. The turbulence of the gas is treated using a one-equation closure. A numerical solution of the resulting governing equations provides velocity and turbulent energy profiles in agreement with the measurements of Tsuji et al. (1984).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 33 *
Loading metrics...

Abstract views

Total abstract views: 153 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th October 2017. This data will be updated every 24 hours.