Skip to main content Accessibility help
×
Home

Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence

  • T. Pestana (a1) and S. Hickel (a1)

Abstract

Two aspects of homogeneous rotating turbulence are quantified through forced direct numerical simulations in an elongated domain, which, in the direction of rotation, is approximately 340 times larger than the typical initial eddy size. First, by following the time evolution of the integral length scale along the axis of rotation $\ell _{\Vert }$ , the growth rate of the columnar eddies and its dependence on the Rossby number $Ro_{\unicode[STIX]{x1D700}}$ is determined as $\unicode[STIX]{x1D6FE}=3.90\exp (-16.72\,Ro_{\unicode[STIX]{x1D700}})$ for $0.06\leqslant Ro_{\unicode[STIX]{x1D700}}\leqslant 0.31$ , where $\unicode[STIX]{x1D6FE}$ is the non-dimensional growth rate. Second, a scaling law for the energy dissipation rate $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D708}}$ is sought. Comparison with current available scaling laws shows that the relation proposed by Baqui & Davidson (Phys. Fluids, vol. 27(2), 2015, 025107), i.e. $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D708}}\sim {u^{\prime }}^{3}/\ell _{\Vert }$ , where $u^{\prime }$ is the root-mean-square velocity, approximates well part of our data, more specifically the range $0.39\leqslant Ro_{\unicode[STIX]{x1D700}}\leqslant 1.54$ . However, relations proposed in the literature fail to model the data for the second and most interesting range, i.e. $0.06\leqslant Ro_{\unicode[STIX]{x1D700}}\leqslant 0.31$ , which is marked by the formation of columnar eddies. To find a similarity relation for the latter, we exploit the concept of a spectral transfer time introduced by Kraichnan (Phys. Fluids, vol. 8(7), 1965, p. 1385). Within this framework, the energy dissipation rate is considered to depend on both the nonlinear time scale and the relaxation time scale. Thus, by analysing our data, expressions for these different time scales are obtained that result in $\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D708}}\sim (u^{\prime 4}Ro_{\unicode[STIX]{x1D700}}^{0.62}\unicode[STIX]{x1D70F}_{nl}^{iso})/\ell _{\bot }^{2}$ , where $\ell _{\bot }$ is the integral length scale in the direction normal to the axis of rotation and $\unicode[STIX]{x1D70F}_{nl}^{iso}$ is the nonlinear time scale of the initial homogeneous isotropic field.

Copyright

Corresponding author

Email address for correspondence: t.pestana@tudelft.nl

References

Hide All
Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.
Baqui, Y. B. & Davidson, P. A. 2015 A phenomenological theory of rotating turbulence. Phys. Fluids 27 (2), 025107.
Bardina, J., Ferziger, J. H. & Rogallo, R. S. 1985 Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321336.
Bartello, P., Métais, O. & Lesieur, M. 1994 Coherent structures in rotating three-dimensional turbulence. J. Fluid Mech. 273, 129.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Boffetta, G. & Ecke, R. E. 2012 Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44 (1), 427451.
van Bokhoven, L. J. A., Clercx, H. J. H., van Heijst, G. J. F. & Trieling, R. R. 2009 Experiments on rapidly rotating turbulent flows. Phys. Fluids 21 (9), 096601.
Cambon, C. & Jacquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295295.
Cardesa, J. I., Vela-Martín, A. & Jiménez, J. 2017 The turbulent cascade in five dimensions. Science 357 (6353), 782784.
Dallas, V., Fauve, S. & Alexakis, A. 2015 Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett. 115 (20), 204501.
Delache, A., Cambon, C. & Godeferd, F. 2014 Scale by scale anisotropy in freely decaying rotating turbulence. Phys. Fluids 26, 025104.
Deusebio, E., Boffetta, G., Lindborg, E. & Musacchio, S. 2014 Dimensional transition in rotating turbulence. Phys. Rev. E 90 (2), 023005.
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301(R).
Godeferd, F. S. & Moisy, F. 2015 Structure and dynamics of rotating turbulence: a review of recent experimental and numerical results. Appl. Mech. Rev. 67 (3), 030802.
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
Hopfinger, E. J., Browand, F. K. & Gagne, Y. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505534.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Proceedings of the Summer Program (Center for Turbulence Research), pp. 193208. Center for Turbulence Research.
Ibbetson, A. & Tritton, D. J. 1975 Experiments on turbulence in a rotating fluid. J. Fluid Mech. 68, 639672.
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.
Jacquin, L., Leuchter, O., Cambon, C. & Mathieu, J. 1990 Homogeneous turbulence in the presence of rotation. J. Fluid Mech. 220, 152.
Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. & Uno, A. 2003 Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21L24.
Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8 (7), 13851387.
Matthaeus, W. H. & Zhou, Y. 1989 Extended inertial range phenomenology of magnetohydrodynamic turbulence. Phys. Fluids B 1 (9), 19291931.
Mininni, P. D., Alexakis, A. & Pouquet, A. 2009 Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers. Phys. Fluids 21 (1), 015108.
Mininni, P. D., Rosenberg, D. & Pouquet, A. 2012 Isotropization at small scales of rotating helically driven turbulence. J. Fluid Mech. 699, 263279.
Moisy, F., Morize, C., Rabaud, M. & Sommeria, J. 2011 Decay laws, anisotropy and cyclone–anticyclone asymmetry in decaying rotating turbulence. J. Fluid Mech. 666, 535.
Morinishi, Y., Nakabayashi, K. & Ren, S. Q. 2001 New DNS algorithm for rotating homogeneous decaying turbulence. Intl J. Heat Fluid Flow 22 (1), 3038.
Nazarenko, S. V. & Schekochihin, A. A. 2011 Critical balance in magnetohydrodynamic, rotating and stratified turbulence: towards a universal scaling conjecture. J. Fluid Mech. 677, 134153.
Pekurovsky, D. 2012 P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions. SIAM J. Sci. Comput. 34 (4), C192C209.
Pestana, T. & Hickel, S.2019a Accompanying videos for the article: Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence. 4TU.Centre for Research Data, https://doi.org/10.4121/uuid:324788e3-a64f-4786-9ef9-f97d70a29064.
Pestana, T. & Hickel, S. 2019b Regime transition in the energy cascade of rotating turbulence. Phys. Rev. E 99 (5), 053103.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Rogallo, R. S.1977 An ILLIAC program for the numerical simulation of homogeneous incompressible turbulence. NASA Tech. Mem. 73.
Seshasayanan, K. & Alexakis, A. 2018 Condensates in rotating turbulent flows. J. Fluid Mech. 841, 434462.
Smith, L. M., Chasnov, J. R. & Waleffe, F. 1996 Crossover from two- to three-dimensional turbulence. Phys. Rev. Lett. 77 (12), 24672470.
Staplehurst, P. J., Davidson, P. A. & Dalziel, S. B. 2008 Structure formation in homogeneous freely decaying rotating turbulence. J. Fluid Mech. 598, 81105.
Tang, S. L., Antonia, R. A., Djenidi, L., Danaila, L. & Zhou, Y. 2018 Reappraisal of the velocity derivative flatness factor in various turbulent flows. J. Fluid Mech. 847, 244265.
Valente, P. C. & Dallas, V. 2017 Spectral imbalance in the inertial range dynamics of decaying rotating turbulence. Phys. Rev. E 95, 023114.
Van Atta, C. W. & Antonia, R. A. 1980 Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids 23 (2), 252257.
Yeung, P. K. & Zhou, Y. 1998 Numerical study of rotating turbulence with external forcing. Phys. Fluids 10 (11), 28952909.
Yoshimatsu, K., Midorikawa, M. & Kaneda, Y. 2011 Columnar eddy formation in freely decaying homogeneous rotating turbulence. J. Fluid Mech. 677, 154178.
Zeman, O. 1994 A note on the spectra and decay of rotating homogeneous turbulence. Phys. Fluids 6 (10), 32213223.
Zhou, Y. 1995 A phenomenological treatment of rotating turbulence. Phys. Fluids 7 (8), 20922094.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence

  • T. Pestana (a1) and S. Hickel (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed