Skip to main content Accessibility help
×
Home

Rotating horizontal convection

  • Roy Barkan (a1), Kraig B. Winters (a1) (a2) and Stefan G. Llewellyn Smith (a2)

Abstract

‘Horizontal convection’ (HC) is the generic name for the flow resulting from a buoyancy variation imposed along a horizontal boundary of a fluid. We study the effects of rotation on three-dimensional HC numerically in two stages: first, when baroclinic instability is suppressed and, second, when it ensues and baroclinic eddies are formed. We concentrate on changes to the thickness of the near-surface boundary layer, the stratification at depth, the overturning circulation and the flow energetics during each of these stages. Our results show that, for moderate flux Rayleigh numbers ( $O(1{0}^{11} )$ ), rapid rotation greatly alters the steady-state solution of HC. When the flow is constrained to be uniform in the transverse direction, rapidly rotating solutions do not support a boundary layer, exhibit weaker overturning circulation and greater stratification at all depths. In this case, diffusion is the dominant mechanism for lateral buoyancy flux and the consequent buildup of available potential energy leads to baroclinically unstable solutions. When these rapidly rotating flows are perturbed, baroclinic instability develops and baroclinic eddies dominate both the lateral and vertical buoyancy fluxes. The resulting statistically steady solution supports a boundary layer, larger values of deep stratification and multiple overturning cells compared with non-rotating HC. A transformed Eulerian-mean approach shows that the residual circulation is dominated by the quasi-geostrophic eddy streamfunction and that the eddy buoyancy flux has a non-negligible interior diabatic component. The kinetic and available potential energies are greater than in the non-rotating case and the mixing efficiency drops from ${\sim }0. 7$ to ${\sim }0. 17$ . The eddies play an important role in the formation of the thermal boundary layer and, together with the negatively buoyant plume, help establish deep stratification. These baroclinically active solutions have characteristics of geostrophic turbulence.

Copyright

Corresponding author

Email address for correspondence: rbarkan@ucsd.edu

References

Hide All
Andrews, D. G 1981 A note on potential energy density in a stratified incompressible fluid. J. Fluid Mech. 107, 227236.
Andrews, D. G. & McIntyre, M. E. 1976 Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 20312048.
Andrews, D. G. & McIntyre, M. E. 1978 Generalized Eliassen–Palm and Charney–Drazin theorems for waves on axisymmetric mean flows in compressible atmospheres. J. Atmos. Sci. 35, 175185.
Beardsley, R. C. & Festa, J. F. 1972 A numerical model of convection driven by a surface stress and non-uniform horizontal heating. J. Phys. Oceanogr. 2 (4), 444455.
Bryan, K. & Cox, M. D. 1967 A numerical investigation of oceanic general circulation. Tellus 19, 5480.
Cessi, P. & Fantini, M. 2004 The eddy-driven thermocline. J. Phys. Oceanogr. 34, 26422658.
Chiu-Webster, S., Hinch, E. J. & Lister, J. 2008 Very viscous horizontal convection. J. Fluid Mech. 611, 395426.
Coman, M. A., Griffiths, R. W. & Hughes, G. O. 2006 Sandström’s experiments revisited. J. Mar. Res. 64, 783796.
Eady, E. 1949 Long waves and cyclone waves. Tellus 1, 3352.
Hazewinkel, J., Paparella, F. & Young, W. R. 2012 Stressed horizontal convection. J. Fluid Mech. 692, 317331.
Henning, C. & Vallis, G. K. 2004 The effects of mesoscale eddies on the main subtropical thermocline. J. Phys. Oceanogr. 34, 24282443.
Hignett, P., Ibbetson, A. & Killworth, P. D. 1981 On rotating thermal convection driven by non-uniform heating from below. J. Fluid Mech. 109, 161187.
Holliday, D. & McIntyre, ME 1981 On potential energy density in an incompressible stratified fluid. J. Fluid Mech. 107, 221225.
Hughes, G. O. & Griffiths, R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40, 185208.
Hughes, G. O., Hogg, A. M. & Griffiths, R. W. 2009 Available potential energy and irreversible mixing in the meridional overturning circulation. J. Phys. Oceanogr. 39, 31303146.
Ilicak, M. & Vallis, G. K. 2012 Simulations and scaling of horizontal convection. Tellus A 64, 18377.
Jeffreys, H. 1925 On fluid motions produced by differences of temperature and humidity. Q. J. R. Meteorol. Soc. 51, 347356.
Killworth, P. D. & Manins, P. C. 1980 A model of confined thermal convection driven by non-uniform heating from below. J. Fluid Mech. 98, 587607.
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnou, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.
Marshall, J., Jones, H., Karsten, R. & Wardle, R. 2002 Can eddies set ocean stratification? J. Phys. Oceanogr. 32, 2638.
Marshall, J. & Radko, T. 2003 Residual-mean solutions for the antarctic circumpolar current and its associated overturning circulation. J. Phys. Oceanogr. 33, 23412354.
Marshall, J & Schott, F. 1999 Open-ocean convection: observations, theory and models. Rev. Geophys. 37, 164.
Molemaker, M. J. & McWilliams, J. C. 2010 Local balance and cross-scale flux of available potential energy. J. Fluid Mech. 645, 295314.
Mullarney, J. C., Griffiths, R. W. & Hughes, G. O. 2004 Convection driven by differential heating at a horizontal boundary. J. Fluid Mech. 516, 181209.
Munk, W. H. & Wunsch, C. 1998 Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. 45, 19772010.
Paparella, F. & Young, W. R. 2002 Horizontal convection is non-turbulent. J. Fluid Mech. 466, 205–14.
Park, Y. G. & Whitehead, J. A. 1999 Rotating convection driven by differential bottom heating. J. Phys. Oceanogr. 29, 12081220.
Peltier, W. & Caulfield, C. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.
Perez-Perez, E., Read, P. L. & Moroz, I. M. 2010 Assessing eddy parameterization schemes in a differentially heated rotating annulus experiment. Ocean Model. 32, 118131.
Plumb, R. A. & Ferrari, R. 2005 Transformed Eulerian-mean theory. Part I: nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr. 35, 165174.
Robinson, A. & Stommel, H. 1959 The oceanic thermocline and the associated thermohaline circulation. Tellus 11, 295308.
Rossby, T. 1965 On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12, 916.
Rossby, T. 1998 Numerical experiments with a fluid heated non-uniformly from below. Tellus 50A, 242257.
Roullet, G. & Klein, P. 2009 Available potential energy diagnosis in a direct numerical simulation of rotating stratified turbulence. J. Fluid Mech. 624, 4555.
Salmon, R. 1980 Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15, 165211.
Sandström, J. W. 1908 Dynamishce versuche mit merrwasser. Ann. Hydrogr. Marit. Meteorol. 36, 623.
Sandström, J. W. 1916 Meteorologische studien im Schwedischen Hochgebirge. Göteb. Kungl. Vetensk. Vitterh. Handl. 17, 148.
Scotti, A., Beardsley, R. & Butman, B. 2006 On the interpretation of energy and energy fluxes of nonlinear internal waves: an example from Massachusetts Bay. J. Fluid Mech. 561, 103112.
Scotti, A. & White, B. 2011 Is horizontal convection really non-turbulent? Geophys. Res. Lett. 38, L21609.
Smith, K. S., Boccaletti, G., Hennings, C. C., Marinov, I., Tam, C. Y., Held, I. M. & Vallis, G. K. 2002 Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech. 469, 1348.
Smith, R. 1976 Longitudinal dispersion of a buoyant contaminant in a shallow channel. J. Fluid Mech. 78, 677688.
Stern, M. E. 1975 Ocean Circulation Physics. Academic.
Stewart, K. D. 2012 The effect of sills and mixing on the meridional overturning circulation. PhD thesis, Australian National University, 128 pp.
Stone, P. H. 1966 On non-geostrophic baroclinic instability. J. Atmos. Sci. 23, 390400.
Tailleux, R. 2009 On the energetics of turbulent mixing, irreversible thermodynamics, Boussinesq models, and the ocean heat engine controversy. J. Fluid Mech. 638, 339382.
Tailleux, R. & Rouleau, L. 2010 The effect of mechanical stirring on horizontal convecion. Tellus 62A, 138153.
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
Welander, P. 1971 The thermocline problem. Phil. Trans. R. Soc. Lond. A 270, 415421.
Winters, K. B., Lombard, P. N., Riley, J. J. & D’Asaro, E. A. 1995 Available potential energy and mixing in density stratified fluids. J. Fluid Mech. 289, 115128.
Winters, K. B. & Young, W. R. 2009 Available potential energy and buoyancy variance in horizontal convection. J. Fluid Mech. 629, 221230.
Winters, K. B. & de la Fuente, A. 2012 Modelling rotating stratified flows at laboratory-scale using spectrally-based DNS. J. Oceangr. Mod. 49–50, 4759.
Winters, K. B. & Barkan, R. 2013 Available potential energy density for Boussinesq fluid flow. J. Fluid Mech. 714, 476488.
Whitehead, J. A. 1981 Laboratory models of circulation in shallow seas. Phil. Trans. R. Soc. Lond. A 302, 583595.
Whitehead, J. A. & Wang, w. 2008 A laboratory model of vertical ocean circulation driven by mixing. J. Phys. Oceanogr. 38, 10911106.
Wolfe, C. L. 2013 Approximations to the ocean’s residual overturning circulation. J. Oceangr. Mod. (submitted).
Wolfe, C. L. & Cessi, P. 2010 What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr. 40, 15201538.
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Rotating horizontal convection

  • Roy Barkan (a1), Kraig B. Winters (a1) (a2) and Stefan G. Llewellyn Smith (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed