Skip to main content

Salinity transfer in bounded double diffusive convection

  • Yantao Yang (a1), Erwin P. van der Poel (a1), Rodolfo Ostilla-Mónico (a1), Chao Sun (a1), Roberto Verzicco (a1) (a2), Siegfried Grossmann (a3) and Detlef Lohse (a1)...

The double diffusive convection between two parallel plates is numerically studied for a series of parameters. The flow is driven by the salinity difference and stabilised by the thermal field. Our simulations are directly compared with experiments by Hage & Tilgner (Phys. Fluids, vol. 22, 2010, 076603) for several sets of parameters and reasonable agreement is found. This, in particular, holds for the salinity flux and its dependence on the salinity Rayleigh number. Salt fingers are present in all simulations and extend through the entire height. The thermal Rayleigh number seems to have a minor influence on the salinity flux but affects the Reynolds number and the morphology of the flow. In addition to the numerical calculation, we apply the Grossmann–Lohse theory for Rayleigh–Bénard flow to the present problem without introducing any new coefficients. The theory successfully predicts the salinity flux both with respect to the scaling and even with respect to the absolute value for the numerical and experimental results.

Corresponding author
Email address for correspondence:
Hide All
Ahlers G., Grossmann S. & Lohse D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.
Burns P. & Meiburg E. 2012 Sediment-laden fresh water above salt water: linear stability analysis. J. Fluid Mech. 691, 279314.
Cross M. C. & Hohenberg P. C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65 (3), 8511112.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.
Grossmann S. & Lohse D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66 (1), 016305.
Grossmann S. & Lohse D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.
Hage E. & Tilgner A. 2010 High Rayleigh number convection with double diffusive fingers. Phys. Fluids 22 (7), 076603.
Hort W., Linz S. J. & Lücke M. 1992 Onset of convection in binary gas mixtures: role of the Dufour effect. Phys. Rev. A 45 (6), 37373748.
Hughes G. O. & Griffiths R. W. 2008 Horizontal convection. Annu. Rev. Fluid Mech. 40 (1), 185208.
Krishnamurti R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.
Kunze E. 2003 A review of oceanic salt-fingering theory. Prog. Oceanogr. 56, 399417.
Landau L. D. & Lifshitz E. M. 1959 Fluid Mechanics. Pergamon.
Linden P. F. 1973 On the structure of salt fingers. Deep-Sea Res. 20 (4), 325340.
Linden P. F. 1978 The formation of banded salt finger structure. J. Geophys. Res. 83 (C6), 29022912.
Liu J. & Ahlers G. 1996 Spiral-defect chaos in Rayleigh–Bénard convection with small Prandtl numbers. Phys. Rev. Lett. 77 (15), 31263129.
Liu J. & Ahlers G. 1997 Rayleigh–Bénard convection in binary-gas mixtures: thermophysical properties and the onset of convection. Phys. Rev. E 55 (6), 69506968.
McDougall T. J. & Taylor J. R. 1984 Flux measurements across a finger interface at low values of the stability ratio. J. Mar. Res. 42 (1), 114.
Mirouh G. M., Garaud P., Stellmach S., Traxler A. L. & Wood T. S. 2012 A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation. Astrophys. J. 750 (1), 61.
Ostilla-Mónico R., Yang Y., van der Poel E. P., Lohse D. & Verzicco R. 2015 A multiple resolutions strategy for direct numerical simulation of scalar turbulence. J. Comp. Phys. (submitted) arXiv:1502.01874.
Paparella F. & von Hardenberg J. 2012 Clustering of salt fingers in double-diffusive convection leads to staircase like stratification. Phys. Rev. Lett. 109, 014502.
Pringle S. E. & Glass R. J. 2002 Double-diffusive finger convection: influence of concentration at fixed buoyancy ratio. J. Fluid Mech. 462, 161183.
Radko T. 2013 Double-Diffusive Convection. Cambridge University Press.
Radko T. & Smith D. P. 2012 Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692, 527.
Radko T. & Stern M. E. 2000 Finite-amplitude salt fingers in a vertically bounded layer. J. Fluid Mech. 425, 133160.
Rosenblum E., Garaud P., Traxler A. & Stellmach S. 2011 Turbulent mixing and layer formation in double-diffusive convection: three-dimensional numerical simulations and theory. Astrophys. J. 731 (1), 66.
Schmitt R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26, 255285.
Schmitt R. W. 2011 Thermohaline convection at density ratios below one: a new regime for salt fingers. J. Mar. Res. 69, 779795.
Schmitt R. W., Ledwell J. R., Montgomery E. T., Polzin K. L. & Toole J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science 308, 685688.
Shirtcliffe T. G. L. & Turner J. S. 1970 Observations of the cell structure of salt fingers. J. Fluid Mech. 41 (04), 707719.
Shraiman B. I. & Siggia E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.
Spiegel E. A. 1972 Convection in stars II. Special effects. Annu. Rev. Astron. Astrophys. 10 (1), 261304.
Sreenivas K. R., Singh O. P. & Srinivasan J. 2009 On the relationship between finger width, velocity, and fluxes in thermohaline convection. Phys. Fluids 21 (2), 026601.
Stellmach S., Traxler A., Garaud P., Brummell N. & Radko T. 2011 Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech. 677, 554571.
Stern M. E. 1960 The ‘salt-fountain’ and thermohaline convection. Tellus 12 (2), 172175.
Stevens R. J. A. M., van der Poel E. P., Grossmann S. & Lohse D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.
Stevens R. J. A. M., Verzicco R. & Lohse D. 2010 Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection. J. Fluid Mech. 643, 495507.
Taylor J. & Bucens P. 1989 Laboratory experiments on the structure of salt fingers. Deep-Sea Res. A 36 (11), 16751704.
Traxler A., Stellmach S., Garaud P., Radko T. & Brummell N. 2011 Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.
Turner J. S. 1967 Salt fingers across a density interface. Deep-Sea Res. 14 (5), 599611.
Turner J. S. 1974 Double-diffusive phenomena. Annu. Rev. Fluid Mech. 6, 3757.
Turner J. S. 1985 Multicomponent convection. Annu. Rev. Fluid Mech. 17 (1), 1144.
Verzicco R. & Camussi R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech. 383, 5573.
Verzicco R. & Camussi R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.
Verzicco R. & Orlandi P. 1996 A finite-difference scheme for three-dimensional incompressible flow in cylindrical coordinates. J. Comput. Phys. 123, 402413.
Wood T. S., Garaud P. & Stellmach S. 2013 A new model for mixing by double-diffusive convection (semi-convection). II. The transport of heat and composition through layers. Astrophys. J. 768 (2), 157.
Yoshida J. & Nagashima H. 2003 Numerical experiments on salt-finger convection. Prog. Oceanogr. 56 (34), 435459.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 1
Total number of PDF views: 54 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.