Skip to main content Accessibility help
×
Home

Saltating particles in a turbulent boundary layer: experiment and theory

  • M. CREYSSELS (a1), P. DUPONT (a2), A. OULD EL MOCTAR (a3), A. VALANCE (a1), I. CANTAT (a1) (a4), J. T. JENKINS (a1) (a4), J. M. PASINI (a4) and K. R. RASMUSSEN (a5)...

Abstract

The work presented here focuses on the analysis of a turbulent boundary layer saturated with saltating particles. Experiments were carried out in a wind tunnel 15m long and 0.6m wide at the University of Aarhus in Denmark with sand grains 242 μm in size for wind speeds ranging from the threshold speed to twice its value. The saltating particles were analysed using particle image velocimetry (PIV) and particle-tracking velocimetry (PTV), and vertical profiles of particle concentration and velocity were extracted. The particle concentration was found to decrease exponentially with the height above the bed, and the characteristic decay height was independent of the wind speed. In contrast with the logarithmic profile of the wind speed, the grain velocity was found to vary linearly with the height. In addition, the measurements indicated that the grain velocity profile depended only slightly on the wind speed. These results are shown to be closely related to the features of the splash function that characterizes the impact of the saltating particles on a sandbed. A numerical simulation is developed that explicitly incorporates low-velocity moments of the splash function in a calculation of the boundary conditions that apply at the bed. The overall features of the experimental measurements are reproduced by simulation.

Copyright

Corresponding author

Email address for correspondence: alexandre.valance@univ-rennes1.fr

Footnotes

Hide All

Present address: United Technologies Research Center, 411 Silver Lane, East Hartford, CT 06108, USA

Footnotes

References

Hide All
Anderson, R. S. & Haff, P. K. 1988 Simulation of aeolian saltation. Science 241, 820823.
Anderson, R. S. & Haff, P. K. 1991 Wind modification and bed response during saltation of sand in air. Acta Mech. 1 (Suppl.), 2152.
Anderson, R. S., Sørensen, M. & Willetts, B. B. 1991 A review of recent progress in our understanding of aeolian transport. Acta Mech. 1 (Suppl.), 120.
Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.
Bagnold, R. A. 1941 The Physics of Blown Sand and Desert Dunes. Chapman and Hall/Methuen.
Beladjine, D., Ammi, M., Oger, L., Valance, A. & Bideau, D. 2007 An experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 75, 6130561317.
Cercignani, C. 1988 The Boltzmann Equation and Its Applications. Springer.
Duran, O. & Herrmann, H. 2006 Modeling of saturated sand flux. J. Stat. Mech., 7, P07011.
Hunt, J. R. C., Eames, I. & Westerweel, J. 2006 Mechanics of inhomogeneous turbulence and interfacial layers. J. Fluid Mech. 554, 499519.
Iversen, J. D. & Rasmussen, K. R. 1999 The effect of wind speed and bed slope on sand transport. Sedimentology 46, 723731.
Jenkins, J. T. & Hanes, D. M. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J. Fluid Mech. 370, 2952.
Kind, R. J. 1976 A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as snow drifting. Atmos. Environ. 10, 219227.
Liu, X. & Dong, Z. 2004 Vertical profiles of aeolian sand mass flux. Geomorphology 59, 205219.
McKenna-Neuman, C. & Maljaars, M. 1997 Wind tunnel measurement of boundary layer response to sediment transport. Bound. Layer Meteorol. 84, 6783.
Mitha, S., Tran, M. Q., Werner, B. T. & Haff, P. K. 1986 The grain/bed impact process in aeolian saltation. Acta Mech. 63, 267.
Namikas, S. L. 2003 Field measurement and numerical modeling of aeolian mass flux distributions on a sandy beach. Sedimentology 50, 303326.
Napalnis, P., Hunt, J. C. R. & Barrett, C. F. 1993 Saltating particles over flat beds. J. Fluid Mech. 251, 661685.
Nishimura, K. & Hunt, J. C. R. 2000 Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer. J. Fluid Mech. 417, 77102.
Oger, L., Ammi, M., Valance, A. & Beladjine, B. 2005 Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17, 467476.
Owen, P. R. 1964 Saltation of uniform grains in air. J. Fluid Mech. 20, 225242.
Owen, P. R. 1980 The Physics of Sand Movement. Lecture notes. Workshop on Physics Desertification. International Centre for Theoretical Physics, Trieste.
Pasini, J. M. & Jenkins, J. T. 2005 Aeolian transport with collisional suspension. Phil. Trans. R. Soc. Lond. 363, 16251646.
Ptasinski, P. K., Boersma, B. J., Nieuwstadt, F. T. M., Hulsen, M. A., Van den Brule, B. H. A. A. & Hunt, J. C. R. 2003 Turbulent channel flow near maximum drag reduction: simulations experiments and mechanisms. J. Fluid Mech. 490, 251291.
Rasmussen, K. R. & Mikkelsen, H. E. 1991 Wind tunnel observations of aeolian transport rates. Acta Mech. 1 (Suppl.), 135144.
Rasmussen, K. R. & Mikkelsen, H. E. 1998 On the efficiency of vertical array aeolian field traps. Sedimentology 45, 789800.
Rasmussen, K. R. & Sørensen, M. 2005 Dynamics of Particles in Aeolian Saltation: Powder and Grains (Ed. Garcia-Rojo, R., Herrmann, H. J. & McNamara, S.) pp. 967971. A. A. Balkema Publishers.
Rice, M. A., Willetts, B. B. & McEwan, I. K. 1996 Observations of collisions of saltating grains with a granular bed from high-speed cine-film. Sedimentology 43, 2131.
Richman, M. W. 1988 Boundary conditions based on a modified Maxwellian velocity distribution for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227240.
Rioual, F., Valance, A. & Bideau, D. 2000 Experimental study of the collision process of a grain on a two-dimensional granular bed. Phys. Rev. E 62, 2450.
Sauermann, G., Kroy, K. & Herrmann, H. J. 2001 Continuum saltation model for sand dunes. Phys. Rev. E 64, 031305.
Sørensen, M. 1991 An analytic model of wind blown sand transport. Acta Mech. 1 (Suppl.), 6781.
Sørensen, M. 2004 On the rate of aeolian sand transport. Geomorphology 59, 5362.
Sørensen, M. & McEwan, I. 1996 On the effect of mid-air collisions on aeolian saltation. Sedimentology 43, 6576.
Ungar, J. & Haff, P. K. 1987 Steady state saltation in air. Sedimentology 34, 289.
Werner, B. T. 1990 A steady-state model of wind-blown sand transport. J. Geol. 98, 117.
Werner, B. T. & Haff, P. K. 1988 The impact process in aeolian saltation: two-dimensional simulations. Sedimentology 35, 189.
White, B. R. & Mounla, H. 1991 An experimental study of froude number effect on wind-tunnel saltation. Acta Mech. 1 (Suppl.), 145157.
White, B. R. & Schulz, J. C. 1977 Magnus effect in saltation. J. Fluid Mech. 81, 497512.
Willetts, B. B. & Rice, M. A. 1989 Collision of quartz grains with a sand bed: the influence of incident angle. Earth Surf. Proc. Land Forms 14, 719730.
Yang, P., Dong, Z., Qian, G., Luo, W. & Wang, H. 2007 Height profile of the mean velocity of an aeolian saltating cloud: wind tunnel measurements by particle image velocimetry. Geomorphology 89, 320334.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed