Skip to main content
×
Home
    • Aa
    • Aa

Sample dispersion in isotachophoresis

  • G. GARCIA-SCHWARZ (a1), M. BERCOVICI (a2), L. A. MARSHALL (a3) and J. G. SANTIAGO (a1)
Abstract

We present an analytical, numerical and experimental study of advective dispersion in isotachophoresis (ITP). We analyse the dynamics of the concentration field of a focused analyte in peak mode ITP. The analyte distribution is subject to electromigration, diffusion and advective dispersion. Advective dispersion results from strong internal pressure gradients caused by non-uniform electro-osmotic flow (EOF). Analyte dispersion strongly affects the sensitivity and resolution of ITP-based assays. We perform axisymmetric time-dependent numerical simulations of fluid flow, diffusion and electromigration. We find that analyte properties contribute greatly to dispersion in ITP. Analytes with mobility values near those of the trailing (TE) or leading electrolyte (LE) show greater penetration into the TE or LE, respectively. Local pressure gradients in the TE and LE then locally disperse these zones of analyte penetration. Based on these observations, we develop a one-dimensional analytical model of the focused sample zone. We treat the LE, TE and LE–TE interface regions separately and, in each, assume a local Taylor–Aris-type effective dispersion coefficient. We also performed well-controlled experiments in circular capillaries, which we use to validate our simulations and analytical model. Our model allows for fast and accurate prediction of the area-averaged sample distribution based on known parameters including species mobilities, EO mobility, applied current density and channel dimensions. This model elucidates the fundamental mechanisms underlying analyte advective dispersion in ITP and can be used to optimize detector placement in detection-based assays.

Copyright
Corresponding author
Email address for correspondence: juan.santiago@stanford.edu
References
Hide All
Alberty R. A. 1950 Moving boundary systems formed by weak electrolytes. Theory of simple systems formed by weak acids and bases. J. Am. Chem. Soc. 72 (6), 23612367.
Anderson J. L. & Idol W. K. 1985 Electroosmosis through pores with nonuniformly charged walls. Chem. Engng Commun. 38 (3), 93.
Aris R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235 (1200), 6777.
Bahga S. S., Bercovici M. & Santiago J. G. 2010 Ionic strength effects on electrophoretic focusing and separations. Electrophoresis 31 (5), 910919.
Bharadwaj R., Huber D. E, Khurana T. & Santiago J. G. 2008 Taylor dispersion in sample preconcentration methods. In Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques, pp. 10851120. CRC Press.
Chen C.-H., Lin H., Lele S. K. & Santiago J. G. 2005 Convective and absolute electrokinetic instability with conductivity gradients. J. Fluid Mech. 524, 263303.
Everaerts F. M., Beckers J. L. & Verheggen T. P. E. M. 1976 Isotachophoresis: Theory, Instrumentation, and Applications. Elsevier.
Gebauer P., Malá Z. & Boček P. 2007 Recent progress in capillary ITP. Electrophoresis 28 (1–2), 2632.
Ghosal S. 2002 Band broadening in a microcapillary with a stepwise change in the zeta-potential. Anal. Chem. 74 (16), 41984203.
Herr A. E., Molho J. I., Santiago J. G., Mungal M. G., Kenny T. W. & Garguilo M. G. 2000 Electroosmotic capillary flow with nonuniform zeta potential. Anal. Chem. 72 (5), 10531057.
Hirokawa T., Nishino M., Aoki N., Kiso Y., Sawamoto Y., Yagi T. & Akiyama J. I 1983 Table of isotachophoretic indices. I. Simulated qualitative and quantitative indices of 287 anionic substances in the range pH 3–10. J. Chromatogr. A 271 (2), D1D106.
Jaroš M., Hruška V., Štědrỳ M., Zusková I. & Gaš B. 2004 Eigenmobilities in background electrolytes for capillary zone electrophoresis. IV. Computer program peakmaster. Electrophoresis 25 (18–19), 30803085.
Jovin T. M. 1973 Multiphasic zone electrophoresis. I. Steady-state moving-boundary systems formed by different electrolyte combinations. Biochemistry 12 (5), 871879.
Khurana T. K. & Santiago J. G. 2008 Sample zone dynamics in peak mode isotachophoresis. Anal. Chem. 80 (16), 63006307.
Khurana T. K & Santiago J. G. 2009 Effects of carbon dioxide on peak mode isotachophoresis: simultaneous preconcentration and separation. Lab Chip 9 (10), 13771384.
Kirby B. J. & Hasselbrink E. F. 2004 Zeta potential of microfluidic substrates. 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25 (2), 187202.
Kohlrausch F. 1897 Über concentrations-verschiebungen durch electrolyse im inneren von lösungen und lösungsgemischen. Ann. Phys. 298 (10), 209239.
Konstantinov B. P. & Oshurkova O. V. 1966 Instrument for analyzing electrolyte solutions by ionic mobilities. Sov. Phys.-Tech. Phys. 11 (5), 693704.
Lin H., Storey B. D., Oddy M. H., Chen C.-H. & Santiago J. G. 2004 Instability of electrokinetic microchannel flows with conductivity gradients. Phys. Fluids 16 (6), 1922.
MacInnes D. A. & Longsworth L. G. 1932 Transference numbers by the method of moving boundaries. Chem. Rev. 11 (2), 171230.
Martin A. J. P. & Everaerts F. M. 1970 Displacement electrophoresis. Proc. R. Soc. Lond. A 316 (1527), 493514.
Martin M. M. & Lindqvist L. 1975 The pH dependence of fluorescein fluorescence. J. Lumin. 10 (6), 381390.
Mchedlov-Petrossyan N. O., Kukhtik V. I. & Alekseeva V. I. 1994 Ionization and tautomerism of fluorescein, rhodamine b, n, n-diethylrhodol and related dyes in mixed and nonaqueous solvents. Dyes Pigment. 24 (1), 1135.
Persat A. & Santiago J. G. 2009 Electrokinetic control of sample splitting at a channel bifurcation using isotachophoresis. New J. Phys. 11 (7), 075026.
Probstein R. F. 1994 Physicochemical Hydrodynamics: An Introduction. Wiley-Interscience.
Santiago J. G. 2001 Electroosmotic flows in microchannels with finite inertial and pressure forces. Anal. Chem. 73 (10), 23532365.
Santos J. J. & Storey B. D. 2008 Instability of electro-osmotic channel flow with streamwise conductivity gradients. Phys. Rev. E 78 (4), 46316.
Saville D. A. 1990 The effects of electroosmosis on the structure of isotachophoresis boundaries. Electrophoresis 11 (11), 899902.
Saville D. A. & Palusinski O. A. 1986 Theory of electrophoretic separations. Part I. Formulation of a mathematical model. AIChE J. 32 (2), 207214.
Schönfeld F., Goet G., Baier T. & Hardt S. 2009 Transition zone dynamics in combined isotachophoretic and electro-osmotic transport. Phys. Fluids 21 (9), 092002.
Shakalisava Y., Poitevin M., Viovy J. L. & Descroix S. 2009 Versatile method for electroosmotic flow measurements in microchip electrophoresis. J. Chromatogr. A 1216 (6), 10301033.
Sounart T. L. & Baygents J. C. 2007 Lubrication theory for electro-osmotic flow in a non-uniform electrolyte. J. Fluid Mech. 576, 139172.
Taylor G. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219 (1137), 186203.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Type Description Title
PDF
Supplementary Materials

Garcia-Schwarz et al. supplementary material
Appendix

 PDF (2.6 MB)
2.6 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 127 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.