Skip to main content Accessibility help

Satellite formation during bubble transition through an interface between immiscible liquids

  • E. Q. Li (a1), S. A. Al-Otaibi (a2), I. U. Vakarelski (a1) and S. T. Thoroddsen (a1)

When a bubble rises to an interface between two immiscible liquids, it can pass through the interface, if this is energetically favourable, i.e. the bubble preferring the side of the interface with the lower air–liquid surface tension. Once the intermediate film between the bubble and the interface has drained sufficiently, the bubble makes contact with the interface, forming a triple-line and producing strong capillary waves which travel around the bubble and can pinch off a satellite on the opposite side, akin to the dynamics in the coalescence cascade. We identify the critical Ohnesorge numbers where such satellites are produced and characterize their sizes. The total transition time scales with the bubble size and differential surface tension, while the satellite pinch-off time scales with the capillary-inertial time of the pool liquid, which originally surrounds the bubble. We also use high-speed video imaging to study the motion of the neck of the contact. For low viscosity we show that it grows in time with a power-law exponent between 0.44 and 0.50, with a prefactor modified by the net sum of the three interfacial tensions. Increasing the viscosity of the receiving liquid drop drastically slows down the motion of the triple-line, when the Ohnesorge number exceeds ${\sim }$ 0.08. This differs qualitatively from the coalescence of two miscible drops of different viscosities, where the lower viscosity sets the coalescence speed. We thereby propose a strong resistance from the triple-line.

Corresponding author
Email address for correspondence:
Hide All
Aarts, D. G. A. L., Lekkerkerker, H. N. W., Guo, H., Wegdam, G. H. & Bonn, D. 2005 Hydrodynamics of droplet coalescence. Phys. Rev. Lett. 95, 164503.
Blanchette, F. & Bigioni, T. P. 2006 Partial coalescence of drops at liquid interfaces. Nat. Phys. 2, 254257.
Blanchette, F. & Bigioni, T. P. 2009 Dynamics of drop coalescence at fluid interfaces. J. Fluid Mech. 620, 333352.
Blanchette, F., Messio, L. & Bush, J. W. M. 2009 The influence of surface tension gradients on drop coalescence. Phys. Fluids 21, 072107.
Carlson, A., Bellani, G. & Amberg, G. 2012 Universality in dynamic wetting dominated by contact-line friction. Phys. Rev. E 85, 045302(R).
Charles, G. E. & Mason, S. G. 1960 The mechanism of partial coalescence of liquid drops at liquid/liquid interfaces. J. Colloid Sci. 15, 105122.
Chen, X. P., Mandre, S. & Feng, J. J. 2006 Partial coalescence between a drop and a liquid–liquid interface. Phys. Fluids 18, 051705.
Ding, H., Li, E. Q., Zhang, F. H., Sui, Y., Spelt, P. D. M. & Thoroddsen, S. T. 2012 Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. J. Fluid Mech. 697, 92114.
de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer.
Gilet, T., Mulleners, K., Lecomte, J. P., Vandewalle, N. & Dorbolo, S. 2007 Critical parameters for the partial coalescence of a droplet. Phys. Rev. E 75, 036303.
Honey, E. M. & Kavehpour, H. P. 2006 Astonishing life of a coalescing drop on a free surface. Phys. Rev. E 73.
Mohamed-Kassim, Z. & Longmire, E. K. 2004 Drop coalescence through a liquid/liquid interface. Phys. Fluids 16, 21702181.
Neeson, M. J., Tabor, R. F., Grieser, F., Dagastine, R. R. & Chan, D. Y. C. 2012 Compound sessile drops. Soft Matt. 8, 1104211050.
Ohnishi, M., Azuma, H. & Straub, J. 1999 Study on secondary bubble creation induced by bubble coalescence. Adv. Space Res. 24, 13311336.
Paulsen, J. D., Burton, J. C. & Nagel, S. R. 2011 Viscous to inertial crossover in liquid drop coalescence. Phys. Rev. Lett. 106, 114501.
Paulsen, J. D., Burton, J. C., Nagel, S. R., Appathuri, A., Harris, M. T. & Basaran, O. A. 2012 The initial regime of coalescence: the inexorable resistance of inertia. Proc. Natl Acad. Sci. USA 109, 68576861.
Ray, B., Biswas, G. & Sharma, A. 2010 Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface. J. Fluid Mech. 655, 72104.
Rioboo, R., Adao, M. H., Voue, M. & De Coninck, J. 2006 Experimental evidence of liquid drop break-up in complete wetting experiments. J. Mater. Sci. 41, 50685080.
Roux, D. C. D. & Cooper-White, J. J. 2004 Dynamics of water spreading on a glass surface. J. Colloid Interface Sci. 277, 424436.
Smedley, G. & Coles, D. 1990 Some transparent immiscible liquid pairs. J. Colloid Interface Sci. 138, 4260.
Sprittles, J. E. & Shikhmurzaev, Y. D. 2012 Coalescence of liquid drops: different models versus experiment. Phys. Fluids 24, 122105.
Thoraval, M.-J. & Thoroddsen, S. T. 2013 Contraction of an air disk caught between two different liquids. Phys. Rev. E 88, 061001(R).
Thoroddsen, S. T., Etoh, T. G., Takehara, K. & Ootsuka, N. 2005a On the coalescence speed of bubbles. Phys. Fluids 17, 071703.
Thoroddsen, S. T., Qian, B., Etoh, T. G. & Takehara, K. 2007 The initial coalescence of miscible drops. Phys. Fluids 19, 072110.
Thoroddsen, S. T. & Takehara, K. 2000 The coalescence-cascade of a drop. Phys. Fluids 12, 12571265.
Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2005b The coalescence speed of a pendent and a sessile drop. J. Fluid Mech. 527, 85114.
Winkels, K. G., Weijs, J. H., Eddi, A. & Snoeijer, J. H. 2012 Initial spreading of low-viscosity drops on partially wetting surfaces. Phys. Rev. E 85, 055301(R).
Wu, M., Cubaud, T. & Ho, C.-M. 2004 Scaling law in liquid drop coalescence driven by surface tension. Phys. Fluids 16, L51.
Yue, P. T., Zhou, C. F. & Feng, J. J. 2006 A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18, 102102.
Zhang, F. H., Li, E. Q. & Thoroddsen, S. T. 2009 Satellite formation during coalescence of unequal size drops. Phys. Rev. Lett. 102, 104502.
Zhang, F. H. & Thoroddsen, S. T. 2008 Satellite generation during bubble coalescence. Phys. Fluids 20, 022104.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title
Supplementary materials

Li supplementary material
Supplementary material

 Unknown (27 KB)
27 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed