Skip to main content
    • Aa
    • Aa

Scalar gradients in stirred mixtures and the deconstruction of random fields

  • T. Le Borgne (a1), P. D. Huck (a2), M. Dentz (a3) and E. Villermaux (a2) (a4)

A general theory for predicting the distribution of scalar gradients (or concentration differences) in heterogeneous flows is proposed. The evolution of scalar fields is quantified from the analysis of the evolution of elementary lamellar structures, which naturally form under the stretching action of the flows. Spatial correlations in scalar fields, and concentration gradients, hence develop through diffusive aggregation of stretched lamellae. Concentration levels at neighbouring spatial locations result from a history of lamella aggregation, which is partly common to the two locations. Concentration differences eliminate this common part, and thus depend only on lamellae that have aggregated independently. Using this principle, we propose a theory which envisions concentration increments as the result of a deconstruction of the basic lamella assemblage. This framework provides analytical expressions for concentration increment probability density functions (PDFs) over any spatial increments for a range of flow systems, including turbulent flows and low-Reynolds-number porous media flows, for confined and dispersing mixtures. Through this deconstruction principle, scalar increment distributions reveal the elementary stretching and aggregation mechanisms building scalar fields.

Corresponding author
Email address for correspondence:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. de Anna , M. Dentz , A. Tartakovsky  & T. Le Borgne 2014a The filamentary structure of mixing fronts and its control on reaction kinetics in porous media flows. Geophys. Res. Lett. 41, 45864593.

P. de Anna , J. Jimenez-Martinez , H. Tabuteau , R. Turuban , T. Le Borgne , M. Derrien  & Y. Meheust 2014b Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48, 508516.

R. A. Antonia , E. J. Hopfinger , Y. Gagne  & F. Anselmet 1984 Temperature structure functions in turbulent shear flows. Phys. Rev. A 30 (5), 27042707.

E. Balkovsky  & A. Fouxon 1999 Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60 (4), 41644174.

G. K. Batchelor 1959 Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.

I. Battiato , D. M. Tartakovsky , A. M. Tartakovsky  & T. Scheibe 2009 On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media. Adv. Water Resour. 32, 16641673.

B. Bijeljic , P. Mostaghimi  & M. Blunt 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107, 204502.

D. Bolster 2014 The fluid mechanics of dissolution trapping in geologic storage of CO2 . J. Fluid Mech. 740, 14.

G. Chiogna , D. L. Hochstetler , A. Bellin , P. K. Kitanidis  & M. Rolle 2012 Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39, L20405.

J. Duplat , C. Innocenti  & E. Villermaux 2010 A nonsequential turbulent mixing process. Phys. Fluids 22, 035104.

J. Duplat  & E. Villermaux 2008 Mixing by random stirring in confined mixtures. J. Fluid Mech. 617, 5186.

N. Engdahl , D. Bolster  & D. A. Benson 2014 Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology. Phys. Rev. E 90, 051001.

G. Falkovich , K. Gawedzki  & M. Vergassola 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.

U. Frisch 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.

O. Greffier , Y. Amarouchene  & H. Kellay 2002 Thickness fluctuations in turbulent soap films. Phys. Rev. Lett. 88 (19), 194101.

F. Haudin , J. H. E. Cartwright , F. Brau  & A. De Wit 2014 Spiral precipitation patterns in confined chemical gardens. Proc. Natl Acad. Sci. USA 111, 1736317367.

J. J. Hidalgo , M. Dentz , Y. Cabeza  & J. Carrera 2015 Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett. 42, 63576364.

B. Jha , L. Cueto-Felgueroso  & R. Juanes 2011 Fluid mixing from viscous fingering. Phys. Rev. Lett. 106, 194502.

J. Jimenez-Martinez , M. L. Porter , J. D. Hyman , J. W. Carey  & H. S. Viswanathan 2016 Mixing in a three-phase system: enhanced production of oil-wet reservoirs by CO2 injection. Geophys. Res. Lett. 43, 196205.

J. Kalda 2000 Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett. 84 (3), 471474.

J. Kalda  & A. Morozenko 2008 Turbulent mixing: the roots of intermittency. New J. Phys. 10, 093003.

R. H. Kraichnan 1974 Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737762.

R. H. Kraichnan 1994 Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 10161019.

T. Le Borgne , M. Dentz  & E. Villermaux 2013 Stretching, coalescence and mixing in porous media. Phys. Rev. Lett. 110, 204501.

T. Le Borgne , M. Dentz  & E. Villermaux 2015 The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458498.

T. Le Borgne , T. Ginn  & M. Dentz 2014 Impact of fluid deformation on mixing-induced chemical reactions in heterogeneous flows. Geophys. Res. Lett. 41, 78987906.

P. Meunier  & E. Villermaux 2010 The diffusive strip method for scalar mixing in two dimensions. J. Fluid Mech. 662, 134172.

Z. Neufeld  & E. Hernandez-Garcia 2009 Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach. Imperial College Press.

A. M. Oboukhov 1962 Some specific features of atmospheric tubulence. J. Fluid Mech. 13, 7781.

A. Pumir , B. I. Shraiman  & E. D. Siggia 1991 Exponential tails and random advection. Phys. Rev. Lett. 66 (23), 29842987.

W. E. Ranz 1979 Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows. AIChE J. 25 (1), 4147.

B. I. Shraiman  & E. D. Siggia 2000 Scalar turbulence. Nature 405, 639646.

A. M. Tartakovsky , D. M. Tartakovsky  & P. Meakin 2008 Stochastic Langevin model for flow and transport in porous media. Phys. Rev. Lett. 101 (4), 044502.

J. R. Taylor  & R. Stocker 2012 Trade-offs of chemotactic foraging in turbulent water. Science 338, 675.

T. Tel , A. de Mourab , C. Grebogib  & G. Károlyid 2005 Chemical and biological activity in open flows: a dynamical system approach. Phys. Rep. 413, 91196.

M. Vergassola , E. Villermaux  & B. I. Shraiman 2007 Infotaxis as a strategy for searching without gradients. Nature 445, 406409.

S. Vernède , L. Ponson  & J. P. Bouchaud 2015 Turbulent fracture surfaces: a footprint of damage percolation? Phys. Rev. Lett. 114, 215501.

E. Villermaux 2012a Mixing by porous media. C. R. Méc. 340, 933943.

E. Villermaux 2012b On dissipation in stirred mixtures. Adv. Appl. Mech. 45, 91107.

E. Villermaux  & J. Duplat 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91 (18), 184501, 14.

E. Villermaux  & J. Duplat 2006 Coarse grained scale of turbulent mixtures. Phys. Rev. Lett. 97, 144506.

E. Villermaux , A. D. Stroock  & H. A. Stone 2008 Bridging kinematics and concentration content in a chaotic micromixer. Phys. Rev. E 77, 015301 (R).

Z. Warhaft 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.

X. I. A. Yang , I. Marusic  & C. Meneveau 2016 Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow. Phys. Rev. Fluids 1, 024402.

Y. Ye , G. Chiogna , O. A. Cirpka , P. Grathwohl  & M. Roll 2015 Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 85 *
Loading metrics...

Abstract views

Total abstract views: 117 *
Loading metrics...

* Views captured on Cambridge Core between 5th January 2017 - 28th March 2017. This data will be updated every 24 hours.