Skip to main content Accessibility help

Scalar gradients in stirred mixtures and the deconstruction of random fields

  • T. Le Borgne (a1), P. D. Huck (a2), M. Dentz (a3) and E. Villermaux (a2) (a4)

A general theory for predicting the distribution of scalar gradients (or concentration differences) in heterogeneous flows is proposed. The evolution of scalar fields is quantified from the analysis of the evolution of elementary lamellar structures, which naturally form under the stretching action of the flows. Spatial correlations in scalar fields, and concentration gradients, hence develop through diffusive aggregation of stretched lamellae. Concentration levels at neighbouring spatial locations result from a history of lamella aggregation, which is partly common to the two locations. Concentration differences eliminate this common part, and thus depend only on lamellae that have aggregated independently. Using this principle, we propose a theory which envisions concentration increments as the result of a deconstruction of the basic lamella assemblage. This framework provides analytical expressions for concentration increment probability density functions (PDFs) over any spatial increments for a range of flow systems, including turbulent flows and low-Reynolds-number porous media flows, for confined and dispersing mixtures. Through this deconstruction principle, scalar increment distributions reveal the elementary stretching and aggregation mechanisms building scalar fields.

Corresponding author
Email address for correspondence:
Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Dover.
de Anna, P., Dentz, M., Tartakovsky, A. & Le Borgne, T. 2014a The filamentary structure of mixing fronts and its control on reaction kinetics in porous media flows. Geophys. Res. Lett. 41, 45864593.
de Anna, P., Jimenez-Martinez, J., Tabuteau, H., Turuban, R., Le Borgne, T., Derrien, M. & Meheust, Y. 2014b Mixing and reaction kinetics in porous media: an experimental pore scale quantification. Environ. Sci. Technol. 48, 508516.
Antonia, R. A., Hopfinger, E. J., Gagne, Y. & Anselmet, F. 1984 Temperature structure functions in turbulent shear flows. Phys. Rev. A 30 (5), 27042707.
Balkovsky, E. & Fouxon, A. 1999 Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60 (4), 41644174.
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.
Battiato, I., Tartakovsky, D. M., Tartakovsky, A. M. & Scheibe, T. 2009 On breakdown of macroscopic models of mixing-controlled heterogeneous reactions in porous media. Adv. Water Resour. 32, 16641673.
Bijeljic, B., Mostaghimi, P. & Blunt, M. 2011 Signature of non-Fickian solute transport in complex heterogeneous porous media. Phys. Rev. Lett. 107, 204502.
Bolster, D. 2014 The fluid mechanics of dissolution trapping in geologic storage of CO2 . J. Fluid Mech. 740, 14.
Chiogna, G., Hochstetler, D. L., Bellin, A., Kitanidis, P. K. & Rolle, M. 2012 Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39, L20405.
Dentz, M., LeBorgne, T., Englert, A. & Bijeljic, B. 2011 Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120–121, 117.
Duplat, J., Innocenti, C. & Villermaux, E. 2010 A nonsequential turbulent mixing process. Phys. Fluids 22, 035104.
Duplat, J. & Villermaux, E. 2008 Mixing by random stirring in confined mixtures. J. Fluid Mech. 617, 5186.
Engdahl, N., Bolster, D. & Benson, D. A. 2014 Predicting the enhancement of mixing-driven reactions in nonuniform flows using measures of flow topology. Phys. Rev. E 90, 051001.
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73 (4), 913975.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Fu, X., Cueto-Felgueroso, L., Bolster, D. & Juanes, R. 2015 Rock dissolution patterns and geochemical shutdown of CO2 -brine-carbonate reactions during convective mixing in porous media. J. Fluid Mech. 726, 296315.
Goodman, J. W. 2007 Speckle Phenomena in Optics. Roberts and Company Publishers.
Greffier, O., Amarouchene, Y. & Kellay, H. 2002 Thickness fluctuations in turbulent soap films. Phys. Rev. Lett. 88 (19), 194101.
Haudin, F., Cartwright, J. H. E., Brau, F. & De Wit, A. 2014 Spiral precipitation patterns in confined chemical gardens. Proc. Natl Acad. Sci. USA 111, 1736317367.
Hidalgo, J. J., Dentz, M., Cabeza, Y. & Carrera, J. 2015 Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett. 42, 63576364.
Jha, B., Cueto-Felgueroso, L. & Juanes, R. 2011 Fluid mixing from viscous fingering. Phys. Rev. Lett. 106, 194502.
Jimenez-Martinez, J., Porter, M. L., Hyman, J. D., Carey, J. W. & Viswanathan, H. S. 2016 Mixing in a three-phase system: enhanced production of oil-wet reservoirs by CO2 injection. Geophys. Res. Lett. 43, 196205.
Kalda, J. 2000 Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett. 84 (3), 471474.
Kalda, J. & Morozenko, A. 2008 Turbulent mixing: the roots of intermittency. New J. Phys. 10, 093003.
Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737762.
Kraichnan, R. H. 1994 Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72, 10161019.
Le Borgne, T., Dentz, M. & Villermaux, E. 2013 Stretching, coalescence and mixing in porous media. Phys. Rev. Lett. 110, 204501.
Le Borgne, T., Dentz, M. & Villermaux, E. 2015 The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458498.
Le Borgne, T., Ginn, T. & Dentz, M. 2014 Impact of fluid deformation on mixing-induced chemical reactions in heterogeneous flows. Geophys. Res. Lett. 41, 78987906.
Meunier, P. & Villermaux, E. 2010 The diffusive strip method for scalar mixing in two dimensions. J. Fluid Mech. 662, 134172.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2. MIT Press.
Neufeld, Z. & Hernandez-Garcia, E. 2009 Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach. Imperial College Press.
Oboukhov, A. M. 1962 Some specific features of atmospheric tubulence. J. Fluid Mech. 13, 7781.
Ottino, J. M. 1989 The Kinematics of Mixing: Stretching, Chaos, and Transport. Cambridge University Press.
Paster, A., Aquino, T. & Bolster, D. 2015 Incomplete mixing and reactions in a laminar shear flow. Phys. Rev. E 92, 012922.
Pumir, A., Shraiman, B. I. & Siggia, E. D. 1991 Exponential tails and random advection. Phys. Rev. Lett. 66 (23), 29842987.
Ranz, W. E. 1979 Application of a stretch model to mixing, diffusion and reaction in laminar and turbulent flows. AIChE J. 25 (1), 4147.
Lord Rayleigh 1880 On the resultant of a large number of vibrations of the same pitch and of arbitrary phase. Phil. Mag. X, 7378.
Shraiman, B. I. & Siggia, E. D. 2000 Scalar turbulence. Nature 405, 639646.
Stocker, R. 2012 Marine microbes see a sea of gradients. Science 6107, 628633.
Tartakovsky, A. M., Tartakovsky, D. M. & Meakin, P. 2008 Stochastic Langevin model for flow and transport in porous media. Phys. Rev. Lett. 101 (4), 044502.
Taylor, J. R. & Stocker, R. 2012 Trade-offs of chemotactic foraging in turbulent water. Science 338, 675.
Tel, T., de Mourab, A., Grebogib, C. & Károlyid, G. 2005 Chemical and biological activity in open flows: a dynamical system approach. Phys. Rep. 413, 91196.
Vaienti, S., Ould-Rouis, M., Anselmet, F. & Le Gal, P. 1994 Statistics of temperature increments in fully developed turbulence. Part I. Theory. Physica D 73, 99112.
Vaienti, S., Ould-Rouis, M., Anselmet, F. & Le Gal, P. 1995 Statistics of temperature increments in fully developed turbulence. Part II. Experiments. Physica D 85, 405424.
Vergassola, M., Villermaux, E. & Shraiman, B. I. 2007 Infotaxis as a strategy for searching without gradients. Nature 445, 406409.
Vernède, S., Ponson, L. & Bouchaud, J. P. 2015 Turbulent fracture surfaces: a footprint of damage percolation? Phys. Rev. Lett. 114, 215501.
Villermaux, E. 2012a Mixing by porous media. C. R. Méc. 340, 933943.
Villermaux, E. 2012b On dissipation in stirred mixtures. Adv. Appl. Mech. 45, 91107.
Villermaux, E. & Duplat, J. 2003 Mixing as an aggregation process. Phys. Rev. Lett. 91 (18), 184501, 14.
Villermaux, E. & Duplat, J. 2006 Coarse grained scale of turbulent mixtures. Phys. Rev. Lett. 97, 144506.
Villermaux, E., Stroock, A. D. & Stone, H. A. 2008 Bridging kinematics and concentration content in a chaotic micromixer. Phys. Rev. E 77, 015301 (R).
Warhaft, Z. 2000 Passive scalars in turbulent flows. Annu. Rev. Fluid Mech. 32 (1), 203240.
Yang, X. I. A., Marusic, I. & Meneveau, C. 2016 Hierarchical random additive process and logarithmic scaling of generalized high order, two-point correlations in turbulent boundary layer flow. Phys. Rev. Fluids 1, 024402.
Ye, Y., Chiogna, G., Cirpka, O. A., Grathwohl, P. & Roll, M. 2015 Experimental evidence of helical flow in porous media. Phys. Rev. Lett. 115, 194502.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed