Hostname: page-component-54dcc4c588-mz6gc Total loading time: 0 Render date: 2025-09-20T08:16:29.737Z Has data issue: false hasContentIssue false

Scaling law of the Kolmogorov constants in turbulent flow with external intermittency

Published online by Cambridge University Press:  18 September 2025

Yuanliang Xie
Affiliation:
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
Xue-Lu Xiong
Affiliation:
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
Yulin Zheng
Affiliation:
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, PR China
Koji Nagata
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
Tomoaki Watanabe
Affiliation:
Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan
Yi Zhou*
Affiliation:
School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
*
Corresponding author: Yi Zhou, yizhou@njust.edu.cn

Abstract

The effects of the external intermittent behaviour on the Kolmogorov constants $C_{k1}$ and $C_2$ in spectral and the physical spaces are investigated using high-resolution direct numerical simulations of a turbulent plane jet. Well-defined $- 5/3$ energy spectrum and $2/3$ structure function can be found in the intermittent flows without large-scale vortex shedding. For different cross-wise positions, the profiles of conditional energy spectra and conditional structure functions exhibit self-similarity at small and intermediate scales when normalised by the conditional Kolmogorov scale of the turbulent region. The conditional Kolmogorov constants are close to those of the fully turbulent flow. The constants $C_{k1}$ and $C_2$ are found to have a power-law dependence on the intermittency factor $\gamma$, that is, $C_{k1}\sim \gamma ^{1/3}$ and $C_{2}\sim \gamma ^{1/3}$, except for the scaling of the structure function in the highly intermittent region with $\gamma =0.25$. In the highly intermittent region, e.g. $\gamma =0.25$, the scaling in the conditional structure function can be considerably influenced by the blocking/sheltering mechanisms of the turbulent/non-turbulent interface (TNTI), leading to slight deviations from self-similarity. We further confirm that the conditional structure function recovers self-similarity after excluding a turbulent region at an average distance of approximately $20$ Kolmogorov length scales from the outer edge of the TNTI, which is comparable to the mean thickness of the TNTI. These findings contribute to the modelling of the edge of a turbulent region.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alhamdi, S.F. & Bailey, S.C. 2017 Universality of local dissipation scales in turbulent boundary layer flows with and without free-stream turbulence. Phys. Fluids 29 (11), 115103.Google Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2017 The turbulence cascade in the near wake of a square prism. J. Fluid Mech. 825, 315352.10.1017/jfm.2017.390CrossRefGoogle Scholar
Alves Portela, F., Papadakis, G. & Vassilicos, J.C. 2020 The role of coherent structures and inhomogeneity in near-field interscale turbulent energy transfers. J. Fluid Mech. 896, A16.10.1017/jfm.2020.341CrossRefGoogle Scholar
Bisset, D.K., Hunt, J.C.R. & Rogers, M.M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.10.1017/S0022112001006759CrossRefGoogle Scholar
Cazalbou, J.B., Spalart, P.R. & Bradshaw, P. 1994 On the behaviour of two-equation models at the edge of a turbulent region. Phys. Fluids 6, 1797.10.1063/1.868241CrossRefGoogle Scholar
Chien, C.C., Blum, D.B. & Voth, G.A. 2013 Effects of fluctuating energy input on the small scales in turbulence. J. Fluid Mech. 737, 527551.CrossRefGoogle Scholar
Corrsin, S. & Kistler, A.L. 1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. Google Scholar
Cuypers, Y., Maurel, A. & Petitheans, P. 2003 Vortex bursts as a source of turbulence. Phys. Rev. Lett. 91, 194502.10.1103/PhysRevLett.91.194502CrossRefGoogle ScholarPubMed
Davidson, P.A. 2004 Turbulence, An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Davidson, P.A. & Pearson, B.R. 2005 Identifying turbulent energy distributions in real, rather than Fourier, space. Phys. Rev. Lett. 95 (21), 214501.CrossRefGoogle ScholarPubMed
Er, S., Laval, J.P. & Vassilicos, J.C. 2023 Length scales and the turbulent/non-turbulent interface of a temporally developing turbulent jet. J. Fluid Mech. 970, A33.10.1017/jfm.2023.654CrossRefGoogle Scholar
Frisch, U., Sulem, P.L. & Nelkin, M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87 (4), 719736.CrossRefGoogle Scholar
Gauding, M., Bode, M., Brahami, Y., Varea, É. & Danaila, L. 2021 Self-similarity of turbulent jet flows with internal and external intermittency. J. Fluid Mech. 919, A41.10.1017/jfm.2021.399CrossRefGoogle Scholar
Gomes-Fernandes, R., Ganapathisubramani, B. & Vassilicos, J.C. 2014 Evolution of the velocity-gradient tensor in a spatially developing turbulent flow. J. Fluid Mech. 756, 252292.10.1017/jfm.2014.452CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 a Characteristics of small-scale shear layers in a temporally evolving turbulent planar jet. J. Fluid Mech. 920, A38.10.1017/jfm.2021.459CrossRefGoogle Scholar
Hayashi, M., Watanabe, T. & Nagata, K. 2021 b The relation between shearing motions and the turbulent/non-turbulent interface in a turbulent planar jet. Phys. Fluids 33 (5), 055126.10.1063/5.0045376CrossRefGoogle Scholar
Heisel, M., de Silva, C.M., Katul, G.G. & Chamecki, M. 2022 Self-similar geometries within the inertial subrange of scales in boundary layer turbulence. J. Fluid Mech. 942, A33.10.1017/jfm.2022.409CrossRefGoogle Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41 (1), 165180.10.1146/annurev.fluid.010908.165203CrossRefGoogle Scholar
Ishihara, T., Ogasawara, H. & Hunt, J.C.R. 2015 Analysis of conditional statistics obtained near the turbulent/non-turbulent interface of turbulent boundary layers. J. Fluids Struct. 53, 5057.10.1016/j.jfluidstructs.2014.10.008CrossRefGoogle Scholar
Kitamura, T., Nagata, K., Sakai, Y., Sasoh, A., Terashima, O. & Harasaki, T. 2014 On invariants in grid turbulence at moderate Reynolds numbers. J. Fluid Mech. 738, 378406.10.1017/jfm.2013.595CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 a Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kolmogorov, A.N. 1941 b The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301305.Google Scholar
Kolmogorov, A.N. 1941 c On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Kovasznay, L.S., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.10.1017/S0022112070000629CrossRefGoogle Scholar
Kravchenko, A.G. & Moin, P. 2000 Numerical studies of flow over a circular cylinder at ReD = 3900. Phys. Fluids 12 (2), 403417.10.1063/1.870318CrossRefGoogle Scholar
Kuznetsov, V.R., Praskovsky, A.A. & Sabelnikov, V.A. 1992 Fine-scale turbulence structure of intermittent hear flows. J. Fluid Mech. 243, 595622.10.1017/S0022112092002842CrossRefGoogle Scholar
Laizet, S., Nedić, J. & Vassilicos, J.C. 2015 The spatial origin of $-5/3$ spectra in grid-generated turbulence. Phys. Fluids 27, 065115.Google Scholar
Laizet, S., Vassilicos, J.C. & Cambon, C. 2013 Interscale energy transfer in decaying turbulence and vorticity-strain-rate dynamics in grid-generated turbulence. Fluid Dyn. Res. 45, 061408.CrossRefGoogle Scholar
Landau, L.D. & Lifschitz, E.M. 1944 Fluid Mechanics (in Russian) USSR. 2nd edn, Pergamon Press.Google Scholar
LaRue, J.C. & Libby, P.A. 1976 Statistical properties of the interface in the turbulent wake of a heated cylinder. Phys. Fluids 19 (12), 18641875.10.1063/1.861421CrossRefGoogle Scholar
Mistry, D., Dawson, J.R. & Kerstein, A.R. 2018 The multi-scale geometry of the near field in an axisymmetric jet. J. Fluid Mech. 838, 501515.10.1017/jfm.2017.899CrossRefGoogle Scholar
Monin, A.S. & Yaglom, A.M. 2007 Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence. Dover Publications Google Scholar
Monin, A.S. & Yaglom, A.M. 1975 Statistical Fluid Mechanics of Turbulence. MIT.Google Scholar
Morinishi, Y., Lund, T.S., Vasilyev, O.V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143, 90124.10.1006/jcph.1998.5962CrossRefGoogle Scholar
Nelkin, M. 1994 Universality and scaling in fully developed turbulence. Adv. Phys. 43, 143181.10.1080/00018739400101485CrossRefGoogle Scholar
Ni, R. & Xia, K.Q. 2013 Kolmogorov constants for the second-order structure function and the energy spectrum. Phys. Rev. E 87 (2), 023002.10.1103/PhysRevE.87.023002CrossRefGoogle ScholarPubMed
Onsager, L. 1949 The distribution of energy in turbulence (abstract). Phys. Rev. 68, 281.Google Scholar
Pearson, B.R. & Antonia, R.A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.10.1017/S0022112001005511CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Praskovsky, A. & Oncley, S. 1994 Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers. Phys. Fluids 6 (9), 28862888.10.1063/1.868435CrossRefGoogle Scholar
Qian, J. 1998 Normal and anomalous scaling of turbulence. Phys. Rev. E 58 (6), 7325.CrossRefGoogle Scholar
Reuther, N. & Kähler, C.J. 2020 Effect of the intermittency dynamics on single and multipoint statistics of turbulent boundary layers. J. Fluid Mech. 897, A11.Google Scholar
Reynolds, O. 1895 Iv. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. R. Soc. Lond. A 186, 123164 Google Scholar
Saddoughi, S.G. & Veeravalli, S.V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.10.1017/S0022112094001370CrossRefGoogle Scholar
She, Z.S. & Leveque, E. 1994 Universal scaling laws in fully developed turbulence. Phys. Rev. Lett. 72 (3), 336.CrossRefGoogle ScholarPubMed
da Silva, C.B., Hunt, J.C.R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.CrossRefGoogle Scholar
da Silva, C.B. & Pereira, J.C.F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20, 055101.10.1063/1.2912513CrossRefGoogle Scholar
Sreenivasan, K.R. 1991 Fractals and multifractals in fluid turbulence. Annu. Rev. Fluid Mech. 23 (1), 539604.CrossRefGoogle Scholar
Sreenivasan, K.R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.CrossRefGoogle Scholar
Sreenivasan, K.R. & Antonia, R.A. 1997 The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech. 29, 435472.CrossRefGoogle Scholar
Taveira, R.R., Diogo, J.S., Lopes, D.C. & da Silva, C.B. 2013 Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.10.1103/PhysRevE.88.043001CrossRefGoogle Scholar
Thiesset, F. & Danaila, L. 2020 The illusion of a Kolmogorov cascade. J. Fluid Mech. 902, F1.10.1017/jfm.2020.594CrossRefGoogle Scholar
Townsend, A.A. 1949 The fully developed wake of a circular cylinder. Austral. J. Chem. 2 (4), 451468.10.1071/CH9490451CrossRefGoogle Scholar
Townsend, A.A. 1956 The Structure of Turbulent Shear Flows. Cambridge University Press.Google Scholar
Van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.10.1017/jfm.2013.613CrossRefGoogle Scholar
Watanabe, T., Nagata, K. & da Silva, C.B. 2017 Vorticity evolution near the turbulent/non-turbulent interfaces in free-shear flows. In Vortex Structures in Fluid Dynamic Problems, pp. 118. InTech.Google Scholar
Watanabe, T., da Silva, C.B. & Nagata, K. 2020 Scale-by-scale kinetic energy budget near the turbulent/nonturbulent interface. Phys. Rev. Fluids 5 (12), 124610.10.1103/PhysRevFluids.5.124610CrossRefGoogle Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2019 Direct numerical simulation of incompressible turbulent boundary layers and planar jets at high Reynolds numbers initialized with implicit large eddy simulation. Comput. Fluids 194, 104314.Google Scholar
Xie, Y.L., Yin, W.J., Zhang, X.X. & Zhou, Y. 2023 Visualization of the rotational and irrotational motions in a temporally evolving turbulent plane jet. J. Vis. 26 (5), 10251036.10.1007/s12650-023-00927-1CrossRefGoogle Scholar
Yurtoglu, M., Carton, M. & Storti, D. 2018 Treat all integrals as volume integrals: a unified, parallel, grid-based method for evaluation of volume, surface, and path integrals on implicitly defined domains. J. Comput. Inform. Sci. Engng 18 (2), 021013.CrossRefGoogle ScholarPubMed
Zecchetto, M. & da Silva, C.B. 2021 Universality of small-scale motions within the turbulent/non-turbulent interface layer. J. Fluid Mech. 916, A9.10.1017/jfm.2021.168CrossRefGoogle Scholar
Zhou, Y., Nagata, K., Ito, Y., Sakai, Y. & Hayase, T. 2023 Appearance of the $-5/3$ scaling law in spatially intermittent flows with strong vortex shedding. Phys. Fluids 35, 045116.Google Scholar
Zhou, Y., Nagata, K., Sakai, Y., Ito, Y. & Hayase, T. 2016 Spatial evolution of the helical behavior and the 2/3 power-law in single-square-grid-generated turbulence. Fluid Dyn. Res. 48, 021404.Google Scholar
Zhou, Y., Nagata, K., Sakai, Y. & Watanabe, T. 2019 Extreme events and non-Kolmogorov −5/3 spectra in turbulent flows behind two side-by-side square cylinders. J. Fluid Mech. 874, 677698.10.1017/jfm.2019.456CrossRefGoogle Scholar
Zhou, Y., Nagata, K., Sakai, Y., Watanabe, T., Ito, Y. & Hayase, T. 2020 Energy transfer in turbulent flows behind two side-by-side square cylinders. J. Fluid Mech. 903, A4.10.1017/jfm.2020.611CrossRefGoogle Scholar
Zhou, Y. & Vassilicos, J.C. 2017 Related self-similar statistics of the turbulent/non-turbulent interface and the turbulence dissipation. J. Fluid Mech. 821, 440457.10.1017/jfm.2017.262CrossRefGoogle Scholar
Zhou, Y. & Vassilicos, J.C. 2020 Energy cascade at the turbulent/nonturbulent interface. Phys. Rev. Fluids 5 (6), 064604.10.1103/PhysRevFluids.5.064604CrossRefGoogle Scholar