Skip to main content
×
Home

Scaling laws and flow structures of double diffusive convection in the finger regime

  • Yantao Yang (a1), Roberto Verzicco (a1) (a2) and Detlef Lohse (a1) (a3)
Abstract

Direct numerical simulations are conducted for double diffusive convection (DDC) bounded by two parallel plates. The Prandtl numbers, i.e. the ratios between the viscosity and the molecular diffusivities of scalars, are similar to the values of seawater. The DDC flow is driven by an unstable salinity difference (here across the two plates) and stabilized at the same time by a temperature difference. For these conditions the flow can be in the finger regime. We develop scaling laws for three key response parameters of the system: the non-dimensional salinity flux $\mathit{Nu}_{S}$ mainly depends on the salinity Rayleigh number $\mathit{Ra}_{S}$ , which measures the strength of the salinity difference and exhibits a very weak dependence on the density ratio $\unicode[STIX]{x1D6EC}$ , which is the ratio of the buoyancy forces induced by two scalar differences. The non-dimensional flow velocity $Re$ and the non-dimensional heat flux $\mathit{Nu}_{T}$ are dependent on both $\mathit{Ra}_{S}$ and $\unicode[STIX]{x1D6EC}$ . However, the rescaled Reynolds number $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ and the rescaled convective heat flux $(\mathit{Nu}_{T}-1)\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{T}^{eff}}$ depend only on $\mathit{Ra}_{S}$ . The two exponents are dependent on the fluid properties and are determined from the numerical results as $\unicode[STIX]{x1D6FC}_{u}^{eff}=0.25\pm 0.02$ and $\unicode[STIX]{x1D6FC}_{T}^{eff}=0.75\pm 0.03$ . Moreover, the behaviours of $\mathit{Nu}_{S}$ and $Re\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}}$ agree with the predictions of the Grossmann–Lohse theory which was originally developed for the Rayleigh–Bénard flow. The non-dimensional salt-finger width and the thickness of the velocity boundary layers, after being rescaled by $\unicode[STIX]{x1D6EC}^{\unicode[STIX]{x1D6FC}_{u}^{eff}/2}$ , collapse and obey a similar power-law scaling relation with $\mathit{Ra}_{S}$ . When $\mathit{Ra}_{S}$ is large enough, salt fingers do not extend from one plate to the other and horizontal zonal flows emerge in the bulk region. We then show that the current scaling strategy can be successfully applied to the experimental results of a heat–copper–ion system (Hage & Tilgner, Phys. Fluids, vol. 22, 2010, 076603). The fluid has different properties and the exponent $\unicode[STIX]{x1D6FC}_{u}^{eff}$ takes a different value $0.54\pm 0.10$ .

Copyright
Corresponding author
Email address for correspondence: yantao.yang@utwente.nl
References
Hide All
Ahlers G., Grossmann S. & Lohse D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.
Grossmann S. & Lohse D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.
Grossmann S. & Lohse D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.
Grossmann S. & Lohse D. 2002 Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. Phys. Rev. E 66 (1), 016305.
Grossmann S. & Lohse D. 2004 Fluctuations in turbulent Rayleigh–Bénard convection: the role of plumes. Phys. Fluids 16 (12), 44624472.
Hage E. & Tilgner A. 2010 High Rayleigh number convection with double diffusive fingers. Phys. Fluids 22 (7), 076603.
Holyer J. Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.
Kellner M. & Tilgner A. 2014 Transition to finger convection in double-diffusive convection. Phys. Fluids 26 (9), 094103.
Krishnamurti R. 2003 Double-diffusive transport in laboratory thermohaline staircases. J. Fluid Mech. 483, 287314.
Krishnamurti R. 2009 Heat, salt and momentum transport in a laboratory thermohaline staircase. J. Fluid Mech. 638, 491506.
Kunze E. 2003 A review of oceanic salt-fingering theory. Prog. Oceanogr. 56, 399417.
Linden P. F. 1978 The formation of banded salt finger structure. J. Geophys. Res. Oceans 83 (C6), 29022912.
McDougall T. J. & Taylor J. R. 1984 Flux measurements across a finger interface at low values of the stability ratio. J. Mar. Res. 42, 114.
Ostilla-Mónico R., Yang Y., van der Poel E. P., Lohse D. & Verzicco R. 2015 A multiple resolutions strategy for direct numerical simulation of scalar turbulence. J. Comput. Phys. 301, 308321.
Radko T. 2013 Double-Diffusive Convection. Cambridge University Press.
Radko T., Flanagan J. D., Stellmach S. & Timmermans M.-L. 2014 Double-diffusive recipes. Part II. Layer-merging events. J. Phys. Oceanogr. 44, 12851305.
Radko T. & Smith D. P. 2012 Equilibrium transport in double-diffusive convection. J. Fluid Mech. 692, 527.
Schmitt R. W. 1979 Flux measurements on salt fingers at an interface. J. Mar. Res. 37, 419436.
Schmitt R. W. 1994 Double diffusion in oceanography. Annu. Rev. Fluid Mech. 26 (1), 255285.
Schmitt R. W. 2011 Thermohaline convection at density ratios below one: a new regime for salt fingers. J. Mar. Res. 69 (4–6), 779795.
Schmitt R. W., Ledwell J. R., Montgomery E. T., Polzin K. L. & Toole J. M. 2005 Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical atlantic. Science 308 (5722), 685688.
Shen C. Y. 1993 Heatsalt finger fluxes across a density interface. Phys. Fluids A 5, 26332643.
Stellmach S., Traxler A., Garaud P., Brummell N. & Radko T. 2011 Dynamics of fingering convection. Part 2. The formation of thermohaline staircases. J. Fluid Mech. 677, 554571.
Stern M. E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.
Stern M. E., Radko T. & Simeonov J. 2001 Salt fingers in an unbounded thermocline. J. Mar. Res. 59, 355390.
Stern M. E. 1960 The salt-fountain and thermohaline convection. Tellus 12 (2), 172175.
Stevens R. J. A. M., van der Poel E. P., Grossmann S. & Lohse D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.
Tait R. I. & Howe M. R. 1971 Thermohaline staircase. Nature 231, 178179.
Taylor J. & Bucens P. 1989 Laboratory experiments on the structure of salt fingers. Deep Sea Res. 36 (11), 16751704.
Traxler A., Stellmach S., Garaud P., Radko T. & Brummell N. 2011 Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities. J. Fluid Mech. 677, 530553.
Turner J. S. 1967 Salt fingers across a density interface. Deep Sea Res. 14, 599611.
Yang Y., van der Poel E. P., Ostilla-Mónico R., Sun C., Verzicco R., Grossmann S. & Lohse D. 2015 Salinity transfer in bounded double diffusive convection. J. Fluid Mech. 768, 476491.
Yang Y., Verzicco R. & Lohse D. 2016a From convection rolls to finger convection in double-diffusive turbulence. Proc. Natl Acad. Sci. USA 113 (1), 6973.
Yang Y., Verzicco R. & Lohse D.2016b Vertically bounded double diffusive convection in the fingering regime: comparing no-slip versus free-slip boundary conditions. Phys. Rev. Lett. (submitted) arXiv:1602.07718.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 164 *
Loading metrics...

Abstract views

Total abstract views: 276 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st November 2017. This data will be updated every 24 hours.