Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-25T15:57:33.583Z Has data issue: false hasContentIssue false

Scaling laws and space–time characteristics of wall pressure fluctuations in an axisymmetric boundary layer with varying pressure gradient

Published online by Cambridge University Press:  30 July 2025

Guoqing Fan
Affiliation:
Computational Marine Hydrodynamics Lab (CMHL), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Hong Chen
Affiliation:
Wuhan Second Ship Design and Research Institute, Wuhan 430205, PR China
Weiwen Zhao*
Affiliation:
Computational Marine Hydrodynamics Lab (CMHL), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Decheng Wan
Affiliation:
Computational Marine Hydrodynamics Lab (CMHL), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
*
Corresponding author: Weiwen Zhao, weiwen.zhao@sjtu.edu.cn

Abstract

Wall-resolved large-eddy simulations of flow over an axisymmetric body of revolution (DARPA SUBOFF bare model) at $ \it{Re}_L=1.1\times 10^6$ are performed to investigate wall pressure fluctuations under the combined effects of transverse curvature and varying pressure gradients. Due to the coexistence of convex and concave streamwise curvatures, the flow in the stern region features alternating zones of favourable and adverse pressure gradients (APGs). The simulation validates experimental findings by Balantrapu et al. (2023, J. Fluid Mech., vol. 960, A28), confirming that in APG-dominant axisymmetric boundary layers without streamwise curvatures, the root mean square wall pressure fluctuations ($p_{w,rms}$) decrease downstream alongside the wall shear stress ($\tau _w$), maintaining a constant ratio $p_{w,rms}/\tau _{w}$. This study further finds that when streamwise curvatures and strong streamwise pressure gradient variations present, this relationship breaks down, suggesting that $\tau _w$ is not the dominant contributor to wall pressure fluctuations. Instead, the local maximum Reynolds shear stress $-\rho \langle u_su_n\rangle _{max }$ emerges as a more robust pressure scaling parameter. Normalising the wall pressure spectra by $-\rho \langle u_su_n\rangle _{max }$ yields better collapse across the entire stern region compared to conventional inner or mixed scaling methods. The magnitude and location of $-\rho \langle u_su_n\rangle _{max }$ significantly influence the spectral levels of wall pressure fluctuations across different frequency bands. As the turbulence intensity and $-\rho \langle u_su_n\rangle _{max }$ shift away from the wall, outer-layer structures – with larger spatial and temporal scales – dominate the coherence of wall pressure fluctuations. This mechanism drives sustained attenuation of high-frequency pressure fluctuations and a simultaneous increase in both the streamwise and transverse correlation lengths of wall pressure fluctuations over the stern region.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abe, H. 2017 Reynolds-number dependence of wall-pressure fluctuations in a pressure-induced turbulent separation bubble. J. Fluid Mech. 833, 563598.10.1017/jfm.2017.694CrossRefGoogle Scholar
Abe, H., Matsuo, Y. & Kawamura, H. 2005 A DNS study of Reynolds-number dependence on pressure fluctuations in a turbulent channel flow. In 4th International Symposium on Turbulence and Shear Flow Phenomena, pp. 189194. Begel House Inc.10.1615/TSFP4.320CrossRefGoogle Scholar
Abraham, B.M. & Keith, W.L. 1998 Direct measurements of turbulent boundary layer wall pressure wavenumber–frequency spectra. J. Fluids Engng 120 (1), 2939.10.1115/1.2819657CrossRefGoogle Scholar
Alam, M.M. 2020 A review of transverse curvature effect on friction force and leading-edge flow. Ocean Engng 218, 107573.10.1016/j.oceaneng.2020.107573CrossRefGoogle Scholar
Balantrapu, N.A., Alexander, W.N. & Devenport, W. 2023 Wall-pressure fluctuations in an axisymmetric boundary layer under strong adverse pressure gradient. J. Fluid Mech. 960, A28.10.1017/jfm.2023.225CrossRefGoogle Scholar
Balantrapu, N.A., Fritsch, D.J., Millican, A.J., Hickling, C., Gargiulo, A., Vishwanathan, V., Alexander, W.N. & Devenport, W.J. 2020 Wall pressure fluctuations in an axisymmetric turbulent boundary layer under strong adverse pressure gradient. In AIAA Scitech 2020 Forum, American Institute of Aeronautics and Astronautics.Google Scholar
Blake, W.K. 1970 Turbulent boundary-layer wall-pressure fluctuations on smooth and rough walls. J. Fluid Mech. 44 (4), 637660.10.1017/S0022112070002069CrossRefGoogle Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.10.1017/jfm.2017.236CrossRefGoogle Scholar
Bull, M.K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28 (4), 719754.10.1017/S0022112067002411CrossRefGoogle Scholar
Caiazzo, A., Pargal, S., Wu, H., Sanjosé, M., Yuan, J. & Moreau, S. 2023 On the effect of adverse pressure gradients on wall-pressure statistics in a controlled-diffusion aerofoil turbulent boundary layer. J. Fluid Mech. 960, A17.10.1017/jfm.2023.157CrossRefGoogle Scholar
Chase, D.M. 1980 Modeling the wavevector–frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vib. 70 (1), 2967.10.1016/0022-460X(80)90553-2CrossRefGoogle Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8), 14501460.10.1063/1.857593CrossRefGoogle Scholar
Clauser, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91108.10.2514/8.2938CrossRefGoogle Scholar
Cohen, E. & Gloerfelt, X. 2018 Influence of pressure gradients on wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 838, 715758.10.1017/jfm.2017.898CrossRefGoogle Scholar
Coleman, G.N., Rumsey, C.L. & Spalart, P.R. 2018 Numerical study of turbulent separation bubbles with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 2870.10.1017/jfm.2018.257CrossRefGoogle ScholarPubMed
Corcos, G.M. 1964 The structure of the turbulent pressure field in boundary-layer flows. J. Fluid Mech. 18 (3), 353378.10.1017/S002211206400026XCrossRefGoogle Scholar
Fan, G.Q., Liu, Y., Zhao, W.W. & Wan, D.C. 2024 a Effect of wall stress models and subgrid-scale models for flow past a cylinder at Reynolds number 3900. Phys. Fluids 36 (1), 015152.10.1063/5.0181469CrossRefGoogle Scholar
Fan, G.Q., Zhu, J., Zhao, W.W. & Wan, D.C. 2024 b A comparative study between wall-resolved and wall-modeled large eddy simulation of turbulent channel flows. In 34th International Ocean and Polar Engineering Conference, pp. 220226. OnePetro.Google Scholar
Farabee, T.M. & Casarella, M.J. 1991 Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids 3 (10), 24102420.10.1063/1.858179CrossRefGoogle Scholar
Francis, R., Ebenezer, D.D., Bhattacharyya, S.K. & Sharma, R. 2023 Estimation of wavenumber–frequency spectra of wall pressure due to turbulent flow over a flat plate using large-eddy simulation. Phys. Fluids 35 (6), 065110.10.1063/5.0152076CrossRefGoogle Scholar
Goody, M. 2004 Empirical spectral model of surface pressure fluctuations. AIAA J. 42 (9), 17881794.10.2514/1.9433CrossRefGoogle Scholar
Griffin, K.P., Fu, L. & Moin, P. 2021 General method for determining the boundary layer thickness in nonequilibrium flows. Phys. Rev. Fluids 6 (2), 024608.10.1103/PhysRevFluids.6.024608CrossRefGoogle Scholar
Groves, N.C., Huang, T.T. & Chang, M.S. 1989 Geometric Characteristics of DARPA SUBOFF Models: (DTRC Model Nos. 5470 and 5471). David Taylor Research Center.Google Scholar
Harun, Z., Monty, J.P., Mathis, R. & Marusic, I. 2013 Pressure gradient effects on the large-scale structure of turbulent boundary layers. J. Fluid Mech. 715, 477498.10.1017/jfm.2012.531CrossRefGoogle Scholar
He, K.J., Zhao, W.W. & Wan, D.C. 2025 Physical characteristics of wall pressure fluctuations for fully developed turbulent annular channel flows. Phys. Fluids 37 (4), 045133.10.1063/5.0262483CrossRefGoogle Scholar
He, K.J., Zhou, F.C., Zhao, W.W. & Wan, D.C. 2024 a Wall-modeled large eddy simulation for a highly decelerated axisymmetric turbulent boundary layer. In 34th International Ocean and Polar Engineering Conference. OnePetro.Google Scholar
He, X., Huang, Q.G., Sun, G.C. & Wang, X.H. 2022 Numerical research of the pressure fluctuation of the bow of the submarine at different velocities. J. Mar. Sci. Engng 10 (9), 1188.10.3390/jmse10091188CrossRefGoogle Scholar
He, Y.H., Zhou, F.C., Zhao, W.W. & Wan, D.C. 2024 b Grid resolution requirements for wall-resolved large eddy simulation of wall pressure fluctuations in turbulent channel flows. In 34th International Ocean and Polar Engineering Conference. OnePetro.Google Scholar
Hu, N. & Herr, M. 2016 Characteristics of wall pressure fluctuations for a flat plate turbulent boundary layer with pressure gradients. In 22nd AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Huang, T., Liu, H.L., Groves, N.C., Forlini, T., Blanton, J. & Gowing, S. 1992 Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program. In Proceedings of the 19th Symposium on Naval Hydrodynamics. National Academy Press.Google Scholar
Issa, R.I. 1986 Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62 (1), 4065.10.1016/0021-9991(86)90099-9CrossRefGoogle Scholar
Jiang, P., Liao, S.J. & Xie, B. 2024 Large-eddy simulation of flow noise from turbulent flows past an axisymmetric hull using high-order schemes. Ocean Engng 312, 119150.10.1016/j.oceaneng.2024.119150CrossRefGoogle Scholar
Jiménez, J., Hoyas, S., Simens, M.P. & Mizuno, Y. 2010 a Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335360.10.1017/S0022112010001370CrossRefGoogle Scholar
Jiménez, J.M., Hultmark, M. & Smits, A.J. 2010 b The intermediate wake of a body of revolution at high Reynolds numbers. J. Fluid Mech. 659, 516539.10.1017/S0022112010002715CrossRefGoogle Scholar
Jiménez, J.M., Reynolds, R.T. & Smits, A.J. 2010 c The effects of fins on the intermediate wake of a submarine model. J. Fluids Engng 132, 031102.10.1115/1.4001010CrossRefGoogle Scholar
Keith, W.L., Hurdis, D.A. & Abraham, B.M. 1992 A comparison of turbulent boundary layer wall-pressure spectra. J. Fluids Engng 114 (3), 338347.10.1115/1.2910035CrossRefGoogle Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.10.1017/S0022112089002090CrossRefGoogle Scholar
Kitsios, V., Sekimoto, A., Atkinson, C., Sillero, J.A., Borrell, G., Gungor, A.G., Jiménez, J. & Soria, J. 2017 Direct numerical simulation of a self-similar adverse pressure gradient turbulent boundary layer at the verge of separation. J. Fluid Mech. 829, 392419.10.1017/jfm.2017.549CrossRefGoogle Scholar
Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P.W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.10.1017/S0022112067001740CrossRefGoogle Scholar
Kraichnan, R.H. 1964 Kolmogorov’s hypotheses and Eulerian turbulence theory. Phys. Fluids 7 (11), 17231734.10.1063/1.2746572CrossRefGoogle Scholar
Kumar, P. & Mahesh, K. 2018 Large-eddy simulation of flow over an axisymmetric body of revolution. J. Fluid Mech. 853, 537563.10.1017/jfm.2018.585CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200. J. Fluid Mech. 774, 395415.10.1017/jfm.2015.268CrossRefGoogle Scholar
Lee, S. 2018 Empirical wall-pressure spectral modeling for zero and adverse pressure gradient flows. AIAA J. 56 (5), 18181829.10.2514/1.J056528CrossRefGoogle Scholar
Liu, C.Q., Gao, Y., Tian, S.L. & Dong, X.R. 2018 Rortex – a new vortex vector definition and vorticity tensor and vector decompositions. Phys. Fluids 30 (3), 035103.10.1063/1.5023001CrossRefGoogle Scholar
Liu, Y., Wang, H.P., Wang, S.Z. & He, G.W. 2023 A cache-efficient reordering method for unstructured meshes with applications to wall-resolved large-eddy simulations. J. Comput. Phys. 480, 112009.10.1016/j.jcp.2023.112009CrossRefGoogle Scholar
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.10.1063/1.3453711CrossRefGoogle Scholar
Monty, J.P., Hutchins, N., Ng, H.C.H., Marusic, I. & Chong, M.S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.10.1017/S0022112009007423CrossRefGoogle Scholar
Morse, N. & Mahesh, K. 2021 Large-eddy simulation and streamline coordinate analysis of flow over an axisymmetric hull. J. Fluid Mech. 926, A18.10.1017/jfm.2021.714CrossRefGoogle Scholar
Morse, N. & Mahesh, K. 2023 Tripping effects on model-scale studies of flow over the DARPA SUBOFF. J. Fluid Mech. 975, A3.10.1017/jfm.2023.777CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.10.1017/S0022112098003218CrossRefGoogle Scholar
Neves, J.C. & Moin, P. 1994 Effects of convex transverse curvature on wall-bounded turbulence. Part 2. The pressure fluctuations. J. Fluid Mech. 272, 383406.10.1017/S0022112094004507CrossRefGoogle Scholar
Neves, J.C., Parviz, M. & Moser, R.D. 1994 Effects of convex transverse curvature on wall-bounded turbulence. Part 1. The velocity and vorticity. J. Fluid Mech. 272, 349382.10.1017/S0022112094004490CrossRefGoogle Scholar
Nicoud, F. & Ducros, F. 1999 Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62 (3), 183200.10.1023/A:1009995426001CrossRefGoogle Scholar
Panton, R.L., Lee, M. & Moser, R.D. 2017 Correlation of pressure fluctuations in turbulent wall layers. Phys. Rev. Fluids 2 (9), 094604.10.1103/PhysRevFluids.2.094604CrossRefGoogle Scholar
Patel, V.C., Nakayama, A. & Damian, R. 1974 Measurements in the thick axisymmetric turbulent boundary layer near the tail of a body of revolution. J. Fluid Mech. 63 (2), 345367.10.1017/S0022112074001170CrossRefGoogle Scholar
Piquet, J. & Patel, V.C. 1999 Transverse curvature effects in turbulent boundary layer. Prog. Aerosp. Sci. 35 (7), 661672.10.1016/S0376-0421(99)00007-XCrossRefGoogle Scholar
Posa, A. & Balaras, E. 2016 A numerical investigation of the wake of an axisymmetric body with appendages. J. Fluid Mech. 792, 470498.10.1017/jfm.2016.47CrossRefGoogle Scholar
Posa, A. & Balaras, E. 2020 A numerical investigation about the effects of Reynolds number on the flow around an appended axisymmetric body of revolution. J. Fluid Mech. 884, A41.10.1017/jfm.2019.961CrossRefGoogle Scholar
Rozenberg, Y., Robert, G. & Moreau, S. 2012 Wall-pressure spectral model including the adverse pressure gradient effects. AIAA J. 50 (10), 21682179.10.2514/1.J051500CrossRefGoogle Scholar
Schatzman, D.M. & Thomas, F.O. 2017 An experimental investigation of an unsteady adverse pressure gradient turbulent boundary layer: embedded shear layer scaling. J. Fluid Mech. 815, 592642.10.1017/jfm.2017.65CrossRefGoogle Scholar
Schewe, G. 1983 On the structure and resolution of wall-pressure fluctuations associated with turbulent boundary-layer flow. J. Fluid Mech. 134, 311328.10.1017/S0022112083003389CrossRefGoogle Scholar
Schloemer, H.H. 1966 Effects of pressure gradients on turbulent boundary-layer wall-pressure fluctuations. J. Acoust. Soc. Am. 40 (5_Suppl), 1254.10.1121/1.1943059CrossRefGoogle Scholar
Sillero, J.A., Jiménez, J. & Moser, R.D. 2013 One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $ \delta^{+}$ ≈ 2000. Phys. Fluids 25 (10), 105102.10.1063/1.4823831CrossRefGoogle Scholar
Simpson, R.L., Ghodbane, M. & Mcgrath, B.E. 1987 Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167186.10.1017/S0022112087000909CrossRefGoogle Scholar
Smol’yakov, A.V. 2006 A new model for the cross spectrum and wavenumber–frequency spectrum of turbulent pressure fluctuations in a boundary layer. Acoust. Phys. 52 (3), 331337.10.1134/S1063771006030146CrossRefGoogle Scholar
Snarski, S.R. & Lueptow, R.M. 1995 Wall pressure and coherent structures in a turbulent boundary layer on a cylinder in axial flow. J. Fluid Mech. 286, 137171.10.1017/S0022112095000681CrossRefGoogle Scholar
Spalart, P.R. & Watmuff, J.H. 1993 Experimental and numerical study of a turbulent boundary layer with pressure gradients. J. Fluid Mech. 249, 337371.10.1017/S002211209300120XCrossRefGoogle Scholar
Tanarro, Á., Vinuesa, R. & Schlatter, P. 2020 Effect of adverse pressure gradients on turbulent wing boundary layers. J. Fluid Mech. 883, A8.10.1017/jfm.2019.838CrossRefGoogle Scholar
Taylor, G.I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.10.1098/rspa.1938.0032CrossRefGoogle Scholar
Tennekes, H. 1975 Eulerian and Lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67 (3), 561567.10.1017/S0022112075000468CrossRefGoogle Scholar
Viazzo, S., Dejoan, A. & Schiestel, R. 2001 Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturbations using LES. Intl J. Heat Fluid Flow 22 (1), 3952.10.1016/S0142-727X(00)00074-6CrossRefGoogle Scholar
Volino, R.J. 2020 Non-equilibrium development in turbulent boundary layers with changing pressure gradients. J. Fluid Mech. 897, A2.10.1017/jfm.2020.319CrossRefGoogle Scholar
Willmarth, W.W., Winkel, R.E., Sharma, L.K. & Bogar, T.J. 1976 Axially symmetric turbulent boundary layers on cylinders: mean velocity profiles and wall pressure fluctuations. J. Fluid Mech. 76 (1), 3564.10.1017/S002211207600311XCrossRefGoogle Scholar
Willmarth, W.W. & Yang, C.S. 1970 Wall-pressure fluctuations beneath turbulent boundary layers on a flat plate and a cylinder. J. Fluid Mech. 41 (1), 4780.10.1017/S0022112070000526CrossRefGoogle Scholar
Wills, J.A.B. 1971 Measurements of the wave-number/phase velocity spectrum of wall pressure beneath a turbulent boundary layer. J. Fluid Mech. 45 (1), 6590.10.1017/S0022112071003008CrossRefGoogle Scholar
Witting, J.M. 1986 A spectral model of pressure fluctuations at a rigid wall bounding an incompressible fluid based on turbulent structures in the boundary layer. Noise Control Engng J. 26 (1), 2843.10.3397/1.2827660CrossRefGoogle Scholar
Yang, B.W. & Yang, Z.X. 2022 On the wavenumber–frequency spectrum of the wall pressure fluctuations in turbulent channel flow. J. Fluid Mech. 937, A39.10.1017/jfm.2022.137CrossRefGoogle Scholar
Zhou, D., Wang, K. & Wang, M. 2020 Large-eddy simulation of an axisymmetric boundary layer on a body of revolution. In AIAA Aviation 2020 Forum. American Institute of Aeronautics and Astronautics.Google Scholar
Zhou, Z.T., Xu, Z.Y., Wang, S.Z. & He, G.W. 2022 Wall-modeled large-eddy simulation of noise generated by turbulence around an appended axisymmetric body of revolution. J. Hydrodyn. 34 (4), 533554.10.1007/s42241-022-0062-zCrossRefGoogle Scholar