Skip to main content

Scaling the circulation shed by a pitching panel

  • James H. J. Buchholz (a1), Melissa A. Green (a2) and Alexander J. Smits (a3)

A new scaling parameter is developed for the circulation shed by a rigid, rectangular panel pitching periodically about its leading edge. This parameter is the product of a kinematic and a geometric component. The kinematic component describes the relationship between the mean vorticity flux from the panel surface and the panel motion. The geometric component depends on the ratio of pitching amplitude to the span of the panel. The kinematic component is developed based on the connection between the surface pressure distribution and the resulting surface vorticity flux, which are supported in a stroke-averaged sense by pressure measurements on the surface of the panel. The parameter gives a robust scaling for the total spanwise circulation shed in a half-cycle by the panel. It provides a useful predictive tool, in that it can be either complementary to the formation number or provide an alternative scaling parameter when vortex saturation and pinch-off do not occur.

Corresponding author
Email address for correspondence:
Hide All
1. Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.
2. Borazjani, I. & Sotiropoulos, F. 2010 On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J. Expl Biol. 213, 89107.
3. Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.
4. Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.
5. Chen, K. K., Colonius, T. & Taira, K. 2010 The leading-edge vortex and quasisteady vortex shedding on an accelerating plate. Phys. Fluids 22, 033601.
6. Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.
7. Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.
8. Gharib, M., Rambod, E. & Shariff, K 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
9. Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 531, 211220.
10. Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating aerofoil. AIAA J. 27 (9), 12001205.
11. Lighthill, M. J. 1963 Introduction boundary layer theory. In Laminar Boundary Layers (ed. Rosenhead, L. ), pp. 46113. Oxford University Press.
12. Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403409.
13. Ringuette, M. J., Milano, M. & Gharib, M. 2007 Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J. Fluid Mech. 581, 453468.
14. Rival, D., Prangemeier, T. & Tropea, C. 2009 The influence of aerofoil kinematics on the formation of leading-edge vortices in bio-inspired flight. Exp. Fluids 46, 823833.
15. Taira, K. & Colonius, T. 2009 Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J. Fluid Mech. 623, 187207.
16. Theodorsen, T. 1935 General theory of aerodynamic instability and the mechanism of flutter. NACA. Report 496.
17. Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32, 3353.
18. Wu, J. Z. & Wu, J. M. 1993 Interactions between a solid surface and a viscous compressible flow field. J. Fluid Mech. 254, 183211.
19. Wu, J. Z. & Wu, J. M. 1996 Vorticity dynamics on boundaries. In Advances in Applied Mechanics (ed. Hutchison, J. W. & Wu, T. Y. ), vol. 32. pp. 119275. Academic.
20. Young, J. & Lai, J. C. S. 2007 Vortex lock-in phenomenon in the wake of a plunging aerofoil. AIAA J. 45 (2), 485490.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 151 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.