Skip to main content

Sedimentation of a surfactant-laden drop under the influence of an electric field

  • Antarip Poddar (a1), Shubhadeep Mandal (a1) (a2), Aditya Bandopadhyay (a1) and Suman Chakraborty (a1)

The sedimentation of a surfactant-laden deformable viscous drop acted upon by an electric field is considered theoretically. The convection of surfactants in conjunction with the combined effect of electrohydrodynamic flow and sedimentation leads to a locally varying surface tension, which subsequently alters the drop dynamics via the interplay of Marangoni, Maxwell and hydrodynamic stresses. Assuming small capillary number and small electric Reynolds number, we employ a regular perturbation technique to solve the coupled system of governing equations. It is shown that when a leaky dielectric drop is sedimenting in another leaky dielectric fluid, the Marangoni stress can oppose the electrohydrodynamic motion severely, thereby causing corresponding changes in the internal flow pattern. Such effects further result in retardation of the drop settling velocity, which would have otherwise increased due to the influence of charge convection. For non-spherical drop shapes, the effect of Marangoni stress is overcome by the ‘tip-stretching’ effect on the flow field. As a result, the drop deformation gets intensified with an increase in sensitivity of the surface tension to the local surfactant concentration. Consequently, for an oblate type of deformation the elevated drag force causes a further reduction in velocity. For similar reasons, prolate drops experience less drag and settle faster than the surfactant-free case. In addition to this, with increased sensitivity of the interfacial tension to the surfactant concentration, the asymmetric deformation about the equator gets suppressed. These findings may turn out to be of fundamental significance towards designing electrohydrodynamically actuated droplet-based microfluidic systems that are intrinsically tunable by varying the surfactant concentration.

Corresponding author
Email addresses for correspondence:,
Hide All
Ajayi, O. O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc R. Soc. Lond. A 364, 499507.
Anna, S. L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48 (1), 285309.
Arp, P. A., Foister, R. T. & Mason, S. G. 1980 Some electrohydrodynamic effects in fluid dispersions. Adv. Colloid Interface Sci. 12 (4), 295356.
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792 (2016), 553589.
Baret, J. C. 2011 Surfactants in droplet-based microfluidics. Lab on a Chip 12 (422), 422433.
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48 (9), 18421848.
Borhan, A., Haj-Hariri, H. & Nadim, A. 1992 Effect of surfactants on the thermocapillary migration of a concentric compound drop. J. Colloid Interface Sci. 149 (2), 553560.
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (01), 131170.
Das, S., Mandal, S. & Chakraborty, S. 2017a Cross-stream migration of a surfactant-laden deformable droplet in a Poiseuille flow. Phys. Fluids 29 (8), 082004.
Das, S., Mandal, S., Som, S. K. & Chakraborty, S. 2017b Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Phys. Fluids 29 (1), 012002.
De Bruijn, R. A. 1993 Tipstreaming of drops in simple shear flows. Chem. Engng Sci. 48 (2), 277284.
Eggleton, C. D., Pawar, Y. P. & Stebe, K. J. 1999 Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces. J. Fluid Mech. 385, 7999.
Ervik, Å., Penne, T. E., Hellesø, S. M., Munkejord, S. T. & Müller, B. 2018 Influence of surfactants on the electrohydrodynamic stretching of water drops in oil. Intl J. Multiphase Flow 98, 96109.
Esmaeeli, A. & Sharifi, P. 2011 Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84 (3), 036308.
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455, 22452269.
Flumerfelt, R. W. 1980 Effects of dynamic interfacial properties on drop deformation and orientation in shear and extensional flow fields. J. Colloid Interface Sci. 76 (2), 330349.
Ha, J. W. & Yang, S. M. 1995 Effects of surfactant on the deformation and stability of a drop in a viscous fluid in an electric field. J. Colloid Interface Sci. 175 (2), 385396.
Ha, J.-W. & Yang, S.-M. 1998 Effect of nonionic surfactant on the deformation and breakup of a drop in an electric field. J. Colloid Interface Sci. 206 (1), 195204.
Hanna, J. A. & Vlahovska, P. M. 2010 Surfactant-induced migration of a spherical drop in Stokes flow. Phys. Fluids 22 (1), 17.
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Hoburg, J. F. & Melcher, J. R. 1977 Electrohydrodynamic mixing and instability induced by co-linear fields and conductivity gradients. Phys. Fluids 20 (6), 903911.
Jensen, O. E. & Grotberg, J. B. 1992 Insoluble surfactant spreading on a thin viscous film: shock evolution and film rupture. J. Fluid Mech. 240, 259288.
Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin liquid film. Phys. Fluids A 5 (1), 5868.
Johnson, R. E. & Sadhal, S. S. 1983 Stokes flow past bubbles and drops partially coated with thin films. Part 2. Thin films with internal circulation – a perturbation solution. J. Fluid Mech. 132, 295318.
Kim, H. S.1988 Surfactant effects on the thermocapillary migration of a droplet. PhD thesis, Clarkson University.
Kim, H. S. & Subramanian, R. S. 1989 Thermocapillary migration of a droplet with insoluble surfactant. I. Surfactant cap. J. Colloid Interface Sci. 127 (2), 417428.
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590 (May), 239264.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice Hall.
Li, X. & Pozrikidis, C. 1997 The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J. Fluid Mech. 341 (1997), 165194.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016a Dielectrophoresis of a surfactant-laden viscous drop. Phys. Fluids 28 (6), 062006.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016b Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop. Phys. Rev. E 93 (4), 012101.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016c The effect of uniform electric field on the cross-stream migration of a drop in plane Poiseuille flow. J. Fluid Mech. 809 (2016), 726774.
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2017a The effect of surface charge convection and shape deformation on the settling velocity of drops in nonuniform electric field. Phys. Fluids 29 (1), 012101.
Mandal, S., Chakrabarti, S. & Chakraborty, S. 2017b Effect of nonuniform electric field on the electrohydrodynamic motion of a drop in Poiseuille flow. Phys. Fluids 29 (5), 052006.
Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D. & Heyman, J. A. 2013 Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8 (5), 870891.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1 (1), 111146.
Mhatre, S. & Thaokar, R. M. 2013 Drop motion, deformation, and cyclic motion in a non-uniform electric field in the viscous limit. Phys. Fluids 25 (7), 072105.
Milliken, W. J. & Leal, L. G. 1994 The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant solubility. J. Colloid Interface Sci. 166 (2), 275285.
Nganguia, H., Young, Y. N., Vlahovska, P. M., Bławzdziewcz, J., Zhang, J. & Lin, H. 2013 Equilibrium electro-deformation of a surfactant-laden viscous drop. Phys. Fluids 25 (9), 092106.
Pak, O. S., Feng, J. & Stone, H. A. 2014 Viscous marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.
Pawar, S. & Stebe, K. J. 1996 Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. I. Insoluble surfactants. Phys. Fluids 8, 17381751.
Pethig, R. 2013 Dielectrophoresis: an assessment of its potential to aid the research and practice of drug discovery and delivery. Adv. Drug Deliv. Rev. 65 (11–12), 15891599.
Ramachandran, A. & Leal, L. G. 2012 The effect of interfacial slip on the rheology of a dilute emulsion of drops for small capillary numbers. J. Rheol. 56 (6), 15551587.
Sadhal, S. S. & Johnson, R. E. 1983 Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film exact solution. J. Fluid Mech. 126 (1), 237250.
Saville, D. A. 1997 Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Annu. Rev. Fluid Mech. 29 (1), 2764.
Sengupta, R., Walker, L. M. & Khair, A. S. 2017 The role of surface charge convection in the electrohydrodynamics and breakup of prolate drops. J. Fluid Mech. 833, 2953.
Sharanya, V. & Raja Sekhar, G. P. 2015 Thermocapillary migration of a spherical drop in an arbitrary transient Stokes flow. Phys. Fluids 27 (6), 063104.
Shields, C. W., Reyes, C. D. & López, G. P. 2015 Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab on a Chip 15 (5), 12301249.
Spertell, R. B. & Saville, D. A. 1976 The roles of electrohydrodynamic phenomena in the motion of drops and bubbles. In Proceedings of the International Colloquium on Drops and Bubbles (ed. Plesset, M.), vol. 1, pp. 106121. California Institute of Technology.
Stebe, K. J., Lin, S.-Y. & Maldarelli, C. 1991 Remobilizing surfactant retarded fluid particle interfaces. I. Stressfree conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics. Phys. Fluids A 3 (1), 320.
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.
Subramanian, R. S. & Balasubramaniam, R. 2001 The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press.
Taylor, G. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proc. R. Soc. Lond. A 291 (1425), 159166.
Teigen, K. E. & Munkejord, S. T. 2010 Influence of surfactant on drop deformation in an electric field. Phys. Fluids 22 (11), 112104.
Thaokar, R. M. 2012 Dielectrophoresis and deformation of a liquid drop in a non-uniform, axisymmetric ac electric field. Eur. Phys. J. E 35 (8), 76.
Tsouris, C., Culbertson, C. T., Depaoli, D. W., Jacobson, S. C., De Almeida, V. F. & Ramsey, J. M. 2003 Electrohydrodynamic mixing in microchannels. AIChE J. 49 (8), 21812186.
Tsukada, T., Katayama, T., Ito, Y. & Hozawa, M. 1993 Theoretical and experimental studies of circulations inside and outside a deformed drop under a uniform electric field. J. Chem. Engng Japan 26 (6), 698703.
Vlahovska, P. M., Loewenberg, M. & Blawzdziewicz, J. 2005 Deformation of a surfactant-covered drop in a linear flow. Phys. Fluids 17 (10), 118.
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395414.
Yariv, E. & Almog, Y. 2016 The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field. J. Fluid Mech. 797, 536548.
Yeo, L. Y., Hou, D., Maheshswari, S. & Chang, H.-C. 2006 Electrohydrodynamic surface microvortices for mixing and particle trapping. Appl. Phys. Lett. 88 (23), 233512.
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (3), 350356.
Zeng, J. & Korsmeyer, T. 2004 Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab on a Chip 4 (4), 265277.
Zhang, L., He, L., Ghadiri, M. & Hassanpour, A. 2015 Effect of surfactants on the deformation and break-up of an aqueous drop in oils under high electric field strengths. J. Petrol. Sci. Engng 125, 3847.
Zheng, B., Tice, J. D. & Ismagilov, R. F. 2004 Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal. Chem. 76 (17), 49774982.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification

Type Description Title
Supplementary materials

Poddar et al. supplementary material
Poddar et al. supplementary material 1

 Unknown (27 KB)
27 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed