Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T01:02:38.330Z Has data issue: false hasContentIssue false

Self-excited vortex-acoustic lock-in in a bluff body combustor

Published online by Cambridge University Press:  13 November 2023

Abraham Benjamin Britto*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Sathesh Mariappan
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
*
Email address for correspondence: abrahambenjamin229@gmail.com

Abstract

We investigate self-excited vortex-acoustic lock-in in a bluff body combustor. The bluff body not only anchors the flame but also sheds vortices. Mutual interaction between vortex shedding and the combustor acoustic field leads to lock-in. A lower-order model for vortex shedding is coupled to the acoustic equations to obtain a set of discrete dynamical maps, which are then solved numerically. Lock-in is identified when a definite phase relationship between vortex shedding and acoustic field remains unaltered with time. The common frequency during (phase) lock-in is either close to the natural acoustic or vortex shedding frequencies, accordingly termed A- or V-lock-in, respectively. Instability and amplitude suppression occur with most parts of the A- and V-lock-in regions, respectively. Furthermore, we relate the lock-in and pre-lock-in regimes observed in our previous experiments (Singh & Mariappan, Combust. Sci. Technol., 2019, pp. 1–29) to A- and V-lock-in phenomena, respectively. Among the two lock-in phenomena, combustion instability is favoured by $1:1$ A-lock-in, whose boundaries in the parameter space can be obtained from a forced response of the vortex shedding process. Finally, we discuss the bifurcations leading to lock-in.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, H.D.I., Brown, R., Sidorowich, J.J. & Tsimring, L.S. 1993 The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65 (4), 13311392.10.1103/RevModPhys.65.1331CrossRefGoogle Scholar
Balanov, A., Janson, N., Postnov, D. & Sosnovtseva, O. 2008 Synchronization: From Simple to Complex. Springer Science & Business Media.Google Scholar
Balusamy, S., Li, L.K.B., Han, Z., Juniper, M.P. & Hochgreb, S. 2015 Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Proc. Combust. Inst. 35 (3), 32293236.CrossRefGoogle Scholar
Britto, A.B. & Mariappan, S. 2019 Lock-in phenomenon of vortex shedding in oscillatory flows: an analytical investigation pertaining to combustors. J. Fluid Mech. 872, 115146.10.1017/jfm.2019.353CrossRefGoogle Scholar
Britto, A.B. & Mariappan, S. 2021 Lock-in phenomenon of vortex shedding in flows excited with two commensurate frequencies: a theoretical investigation pertaining to combustion instability. J. Fluid Mech. 925, A9.CrossRefGoogle Scholar
Candel, S.M. 1992 Combustion instabilities coupled by pressure waves and their active control. In Symposium (International) on Combustion, vol. 24, pp. 1277–1296. Elsevier.CrossRefGoogle Scholar
Cetegen, B.M. & Basu, S. 2006 Soot topography in a planar diffusion flame wrapped by a line vortex. Combust. Flame 146 (4), 687697.CrossRefGoogle Scholar
Cetegen, B.M. & Sirignano, W.A. 1990 Study of mixing and reaction in the field of a vortex. Combust. Sci. Technol. 72 (4–6), 157181.10.1080/00102209008951646CrossRefGoogle Scholar
Chakravarthy, S.R., Shreenivasan, O.J., Boehm, B., Dreizler, A. & Janicka, J. 2007 Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. Acoust. Soc. Am. J. 122 (1), 120127.CrossRefGoogle Scholar
Coutinho, F.A.B., Nogami, Y. & Toyama, F.M. 2009 Unusual situations that arise with the Dirac delta function and its derivative. Rev. Bras. Ensino Fís. 31 (4), 43024308.10.1590/S1806-11172009000400004CrossRefGoogle Scholar
Cundy, H. & Rollett, A. 1989 Lissajous's figures. In Mathematical Models, pp. 242–244. Oxford University Press.Google Scholar
Doranehgard, M.H., Gupta, V. & Li, L.K.B. 2022 Quenching and amplification of thermoacoustic oscillations in two nonidentical Rijke tubes interacting via time-delay and dissipative coupling. Phys. Rev. E 105 (6), 064206.10.1103/PhysRevE.105.064206CrossRefGoogle ScholarPubMed
Dotson, K.W., Koshigoe, S. & Pace, K.K. 1997 Vortex shedding in a large solid rocket motor without inhibitors at the segment interfaces. J. Propul. Power 13 (2), 197206.CrossRefGoogle Scholar
Emerson, B. & Lieuwen, T. 2015 Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary. J. Fluid Mech. 779, 716750.CrossRefGoogle Scholar
Fraser, A.M. & Swinney, H.L. 1986 Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33 (2), 11341140.CrossRefGoogle ScholarPubMed
Guan, Y., Gupta, V., Kashinath, K. & Li, L.K.B. 2019 a Open-loop control of periodic thermoacoustic oscillations: experiments and low-order modelling in a synchronization framework. Proc. Combust. Inst. 37 (4), 53155323.CrossRefGoogle Scholar
Guan, Y., Gupta, V., Wan, M. & Li, L.K.B. 2019 b Forced synchronization of quasiperiodic oscillations in a thermoacoustic system. J. Fluid Mech. 879, 390421.CrossRefGoogle Scholar
Guan, Y., Moon, K., Kim, K.T. & Li, L.K.B. 2021 Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators. Phys. Rev. E 104 (2), 024216.CrossRefGoogle ScholarPubMed
Hertzberg, J.R., Shepherd, I.G. & Talbot, L. 1991 Vortex shedding behind rod stabilized flames. Combust. Flame 86 (1–2), 111.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35 (4), 293364.CrossRefGoogle Scholar
Huber, A. & Polifke, W. 2009 Dynamics of practical premixed flames. Part I. Model structure and identification. Intl J. Spray Combust. Dyn. 1 (2), 199228.CrossRefGoogle Scholar
Hyodo, H., Iwasaki, M. & Biwa, T. 2020 Suppression of Rijke tube oscillations by delay coupling. J. Appl. Phys. 128 (9).CrossRefGoogle Scholar
Jegal, H., Moon, K., Gu, J., Li, L.K.B. & Kim, K.T. 2019 Mutual synchronization of two lean-premixed gas turbine combustors: phase locking and amplitude death. Combust. Flame 206, 424437.CrossRefGoogle Scholar
Juniper, M.P. & Sujith, R.I. 2018 Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661689.CrossRefGoogle Scholar
Juniper, M.P. & Yoko, M. 2022 Generating a physics-based quantitatively-accurate model of an electrically-heated Rijke tube with Bayesian inference. J. Sound Vib. 535, 117096.CrossRefGoogle Scholar
Kabiraj, L. & Sujith, R.I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.CrossRefGoogle Scholar
Kabiraj, L., Sujith, R.I. & Wahi, P. 2012 Bifurcations of self-excited ducted laminar premixed flames. Trans. ASME: J. Engng Gas Turbines Power 134 (3).Google Scholar
Kashinath, K., Li, L.K.B. & Juniper, M.P. 2018 Forced synchronization of periodic and aperiodic thermoacoustic oscillations: lock-in, bifurcations and open-loop control. J. Fluid Mech. 838, 690714.CrossRefGoogle Scholar
Kashinath, K., Waugh, I.C. & Juniper, M.P. 2014 Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. J. Fluid Mech. 761, 399430.CrossRefGoogle Scholar
Khalil, A.E.E. & Gupta, A.K. 2013 Fuel flexible distributed combustion for efficient and clean gas turbine engines. Appl. Energy 109, 267274.CrossRefGoogle Scholar
Kook, H. & Mongeau, L. 2002 Analysis of the periodic pressure fluctuations induced by flow over a cavity. J. Sound Vib. 251 (5), 823846.CrossRefGoogle Scholar
Kushwaha, A.K., Mazur, M., Worth, N., Dawson, J. & Li, L.K.B. 2017 Transverse acoustic forcing of a round hydrodynamically self-excited jet. In APS Division of Fluid Dynamics Meeting Abstracts, pp. Q23–009.Google Scholar
Kushwaha, A.K., Worth, N.A., Dawson, J.R., Gupta, V. & Li, L.K.B. 2022 Asynchronous and synchronous quenching of a globally unstable jet via axisymmetry breaking. J. Fluid Mech. 937, A40.CrossRefGoogle Scholar
Li, L.K.B. & Juniper, M.P. 2013 a Lock-in and quasiperiodicity in a forced hydrodynamically self-excited jet. J. Fluid Mech. 726, 624655.CrossRefGoogle Scholar
Li, L.K.B. & Juniper, M.P. 2013 b Lock-in and quasiperiodicity in hydrodynamically self-excited flames: experiments and modelling. Proc. Combust. Inst. 34 (1), 947954.CrossRefGoogle Scholar
Li, L.K.B. & Juniper, M.P. 2013 c Phase trapping and slipping in a forced hydrodynamically self-excited jet. J. Fluid Mech. 735, R5.CrossRefGoogle Scholar
Lieuwen, T.C. & Yang, V. 2005 Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling. American Institute of Aeronautics and Astronautics.Google Scholar
Lieuwen, T. & Zinn, B.T. 1998 The role of equivalence ratio oscillations in driving combustion instabilities in low nox gas turbines. In Symposium (International) on Combustion, vol. 27, pp. 1809–1816. Elsevier.CrossRefGoogle Scholar
Matveev, K.I. & Culick, F.E.C. 2003 A model for combustion instability involving vortex shedding. Combust. Sci. Technol. 175 (6), 10591083.CrossRefGoogle Scholar
Mondal, S., Pawar, S.A. & Sujith, R.I. 2019 Forced synchronization and asynchronous quenching of periodic oscillations in a thermoacoustic system. J. Fluid Mech. 864, 7396.CrossRefGoogle Scholar
Monkewitz, P.A. 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31 (5), 9991006.CrossRefGoogle Scholar
Moon, K., Guan, Y., Li, L.K.B. & Kim, K.T. 2020 Mutual synchronization of two flame-driven thermoacoustic oscillators: dissipative and time-delayed coupling effects. Chaos 30 (2).CrossRefGoogle ScholarPubMed
Nair, V., Thampi, G. & Sujith, R.I. 2014 Intermittency route to thermoacoustic instability in turbulent combustors. J. Fluid Mech. 756, 470487.CrossRefGoogle Scholar
Nóvoa, A. & Magri, L. 2022 Real-time thermoacoustic data assimilation. J. Fluid Mech. 948, A35.CrossRefGoogle Scholar
Pawar, S.A., Seshadri, A., Unni, V.R. & Sujith, R.I. 2017 Thermoacoustic instability as mutual synchronization between the acoustic field of the confinement and turbulent reactive flow. J. Fluid Mech. 827, 664693.CrossRefGoogle Scholar
Peters, N. & Williams, F.A. 1989 Premixed combustion in a vortex. In Symposium (International) on Combustion, vol. 22, pp. 495–503. Elsevier.CrossRefGoogle Scholar
Pikovsky, A., Rosenblum, M. & Kurths, J. 2003 Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press.Google Scholar
Poinsot, T.J., Trouve, A.C., Veynante, D.P., Candel, S.M. & Esposito, E.J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.CrossRefGoogle Scholar
Rogers, D.E. & Marble, F.E. 1956 A mechanism for high-frequency oscillation in ramjet combustors and afterburners. J. Jet Propul. 26 (6), 456462.CrossRefGoogle Scholar
Rossiter, J.E. 1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. RAE Tech. Rep. 64037. Ministry of Aviation, Aeronautical research council reports and memoranda.Google Scholar
Schadow, K.C. & Gutmark, E. 1992 Combustion instability related to vortex shedding in dump combustors and their passive control. Prog. Energy Combust. Sci. 18 (2), 117132.CrossRefGoogle Scholar
Shanbhogue, S.J., Husain, S. & Lieuwen, T. 2009 Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35 (1), 98120.CrossRefGoogle Scholar
Singaravelu, B. & Mariappan, S. 2016 Stability analysis of thermoacoustic interactions in vortex shedding combustors using Poincaré map. J. Fluid Mech. 801, 597622.CrossRefGoogle Scholar
Singh, G. & Mariappan, S. 2019 Experimental investigation on the route to vortex-acoustic lock-in phenomenon in bluff body stabilized combustors. Combust. Sci. Technol. 193 (9), 15381566.CrossRefGoogle Scholar
Sterling, J.D. & Zukoski, E.E. 1991 Nonlinear dynamics of laboratory combustor pressure oscillations. Combust. Sci. Technol. 77 (4–6), 225238.CrossRefGoogle Scholar
Sujith, R.I. & Unni, V.R. 2020 Complex system approach to investigate and mitigate thermoacoustic instability in turbulent combustors. Phys. Fluids 32 (6).CrossRefGoogle Scholar
Tuwankotta, J.M. & Ihsan, A.F. 2019 On the dynamics of a kicked harmonic oscillator. Intl J. Dyn. Control 7 (3), 857865.CrossRefGoogle Scholar
Zaman, K.B.M.Q. & Hussain, A.K.M.F. 1981 Taylor hypothesis and large-scale coherent structures. J. Fluid Mech. 112, 379396.CrossRefGoogle Scholar
Zhou, Y. & Antonia, R.A. 1992 Convection velocity measurements in a cylinder wake. Exp. Fluids 13 (1), 6370.CrossRefGoogle Scholar