Skip to main content

Self-organized oscillations of Leidenfrost drops

  • Xiaolei Ma (a1) and Justin C. Burton (a1)

In the Leidenfrost effect, a thin layer of evaporated vapour forms between a liquid and a hot solid. The complex interactions between the solid, liquid and vapour phases can lead to rich dynamics even in a single Leidenfrost drop. Here we investigate the self-organized oscillations of Leidenfrost drops that are excited by a constant flow of evaporated vapour beneath the drop. We show that for small Leidenfrost drops, the frequency of a recently reported ‘breathing mode’ (Caswell, Phys. Rev. E, vol. 90, 2014, 013014) can be explained by a simple balance of gravitational and surface tension forces. For large Leidenfrost drops, azimuthal star-shaped oscillations are observed. Our previous work showed how the coupling between the rapid evaporated vapour flow and the vapour–liquid interface excites the star-shaped oscillations (Ma et al., Phys. Rev. Fluids, vol. 2, 2017, 031602). In our experiments, star-shaped oscillation modes of $n=2{-}13$ are observed in different liquids, and the number of observed modes depends sensitively on the viscosity of the liquid. Here we expand on this work by directly comparing the oscillations with theoretical predictions, as well as show how the oscillations are initiated by a parametric forcing mechanism through pressure oscillations in the vapour layer. The pressure oscillations are driven by the capillary waves of a characteristic wavelength beneath the drop. These capillary waves can be generated by a large shear stress at the liquid–vapour interface due to the rapid flow of evaporated vapour. We also explore potential effects of thermal convection in the liquid. Although the measured Rayleigh number is significantly larger than the critical Rayleigh number, the frequency (wavelength) of the oscillations depends only on the capillary length of the liquid, and is independent of the drop radius and substrate temperature. Thus convection seems to play a minor role in Leidenfrost drop oscillations, which are mostly hydrodynamic in origin.

Corresponding author
Email address for correspondence:
Hide All
Abdelaziz, R., Disci-Zayed, D., Hedayati, M. K., Pöhls, J.-H., Zillohu, A. U., Erkartal, B., Chakravadhanula, V. S. K., Duppel, V., Kienle, L. & Elbahri, M. 2013 Green chemistry and nanofabrication in a levitated Leidenfrost drop. Nat. Commun. 4, 2400.
Adachi, K. & Takaki, R. 1984 Vibration of a flattened drop. I. Observation. J. Phys. Soc. Japan 53, 41844191.
Bain, R. M., Pulliam, C. J., Thery, F. & Cooks, R. G. 2016 Accelerated chemical reactions and organic synthesis in Leidenfrost droplets. Angew. Chem. Intl Ed. 55, 1047810482.
Becker, E., Hiller, W. J. & Kowalewski, T. A. 1991 Experimental and theoretical investigation of large-amplitude oscillations of liquid droplets. J. Fluid Mech. 231, 189210.
Bénard, H. 1901 Les tourbillons cellulaires dans une nappe liquide. – Méthodes optiques d’observation et d’enregistrement. J. Phys. Théor. Appl. 10, 254266.
Bernardin, J. D. & Mudawar, I. 1999 The Leidenfrost point: experimental study and assessment of existing models. Trans. ASME J. Heat Transfer 121, 894903.
Biance, A.-L., Chevy, F., Clanet, C., Lagubeau, G. & Quéré, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15, 16321637.
Bouwhuis, W., Winkels, K. G., Peters, I. R., Brunet, P., van der Meer, D. & Snoeijer, J. H. 2013 Oscillating and star-shaped drops levitated by an airflow. Phys. Rev. E 88, 023017.
Brunet, P. & Snoeijer, J. H. 2011 Star-drops formed by periodic excitation and on an air cushion – A short review. Eur. Phys. J. Spec. Top. 192, 207226.
Burton, J. C., Huisman, F. M., Alison, P., Rogerson, D. & Taborek, P. 2010 Experimental and numerical investigation of the equilibrium geometry of liquid lenses. Langmuir 26, 1531615324.
Burton, J. C., Sharpe, A. L., van der Veen, R. C. A., Franco, A. & Nagel, S. R. 2012 Geometry of the vapor layer under a Leidenfrost drop. Phys. Rev. Lett. 109, 074301.
Castanet, G., Caballina, O. & Lemoine, F. 2015 Drop spreading at the impact in the Leidenfrost boiling. Phys. Fluids 27, 063302.
Caswell, T. A. 2014 Dynamics of the vapor layer below a Leidenfrost drop. Phys. Rev. E 90, 013014.
Chang, H.-h. & Demekhin, E. A. 2002 Complex Wave Dynamics on Thin Films. Elsevier.
Cousins, T. R., Goldstein, R. E., Jaworski, J. W. & Pesci, A. I. 2012 A ratchet trap for Leidenfrost drops. J. Fluid Mech. 696, 215227.
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.
Duchemin, L., Lister, J. R. & Lange, U. 2005 Static shapes of levitated viscous drops. J. Fluid Mech. 533, 161170.
Dupeux, G., Le Merrer, M., Clanet, C. & Quéré, D. 2011a Trapping Leidenfrost drops with crenelations. Phys. Rev. Lett. 107, 114503.
Dupeux, G., Le Merrer, M., Lagubeau, G., Clanet, C., Hardt, S. & Quéré, D. 2011b Viscous mechanism for Leidenfrost propulsion on a ratchet. Europhys. Lett. 96, 58001.
Haumesser, P.-H., Bancillon, J., Daniel, M., Perez, M. & Garandet, J.-P. 2002 High-temperature contactless viscosity measurements by the gas–film levitation technique: application to oxide and metallic glasses. Rev. Sci. Instrum. 73, 32753285.
Hidalgo-Caballero, S., Escobar-Ortega, Y. & Pacheco-Vázquez, F. 2016 Leidenfrost phenomenon on conical surfaces. Phys. Rev. Fluids 1, 051902.
Holter, N. J. & Glasscock, W. R. 1952 Vibrations of evaporating liquid drops. J. Acoust. Soc. Am. 24, 682686.
Ishikawa, T., Yu, J. & Paradis, P.-F. 2006 Noncontact surface tension and viscosity measurements of molten oxides with a pressurized hybrid electrostatic-aerodynamic levitator. Rev. Sci. Instrum. 77, 053901.
Kadota, T., Tanaka, H., Segawa, D., Nakaya, S. & Yamasaki, H. 2007 Microexplosion of an emulsion droplet during Leidenfrost burning. Proc. Combust. Inst. 31, 21252131.
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid Mech. 279, 4968.
Lagubeau, G., Le Merrer, M., Clanet, C. & Quéré, D. 2011 Leidenfrost on a ratchet. Nat. Phys. 7, 395.
Langstaff, D., Gunn, M., Greaves, G. N., Marsing, A. & Kargl, F. 2013 Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids. Rev. Sci. Instrum. 84, 124901.
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.
Leidenfrost, J. G. 1756 De aquae communis nonnullis qualitatibus tractatus. Ovenius.
Lemmon, E. W., McLinden, M. O., Friend, D. G., Linstrom, P. J. & Mallard, W. G.2011 NIST chemistry WebBook, Nist standard reference database number 69 (National Institute of Standards and Technology, Gaithersburg, MD, 2011),
Li, J., Hou, Y., Liu, Y., Hao, C., Li, M., Chaudhury, M. K., Yao, S. & Wang, Z. 2016 Directional transport of high-temperature Janus droplets mediated by structural topography. Nat. Phys. 12, 606.
Linke, H., Alemán, B. J., Melling, L. D., Taormina, M. J., Francis, M. J., Dow-Hygelund, C. C., Narayanan, V., Taylor, R. P. & Stout, A. 2006 Self-propelled Leidenfrost droplets. Phys. Rev. Lett. 96, 154502.
Lister, J. R., Thompson, A. B., Perriot, A. & Duchemin, L. 2008 Shape and stability of axisymmetric levitated viscous drops. J. Fluid Mech. 617, 167185.
Liu, Y., Tan, P. & Xu, L. 2013 Compressible air entrapment in high-speed drop impacts on solid surfaces. J. Fluid Mech. 716, R9.
Liu, Y., Tan, P. & Xu, L. 2015 Kelvin–Helmholtz instability in an ultrathin air film causes drop splashing on smooth surfaces. Proc. Natl Acad. Sci. USA 112, 32803284.
Ma, X., Liétor-Santos, J.-J. & Burton, J. C. 2015 The many faces of a Leidenfrost drop. Phys. Fluids 27, 091109.
Ma, X., Liétor-Santos, J.-J. & Burton, J. C. 2017 Star-shaped oscillations of Leidenfrost drops. Phys. Rev. Fluids 2, 031602.
Mampallil, D., Eral, H. B., Staicu, A., Mugele, F. & van den Ende, D. 2013 Electrowetting-driven oscillating drops sandwiched between two substrates. Phys. Rev. E 88, 053015.
Maquet, L., Brandenbourger, M., Sobac, B., Biance, A.-L., Colinet, P. & Dorbolo, S. 2015 Leidenfrost drops: effect of gravity. Europhys. Lett. 110, 24001.
Maquet, L., Sobac, B., Darbois-Texier, B., Duchesne, A., Brandenbourger, M., Rednikov, A., Colinet, P. & Dorbolo, S. 2016 Leidenfrost drops on a heated liquid pool. Phys. Rev. Fluids 1, 053902.
Marangoni, C. 1871 Über die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen. Ann. Phys. 219, 337354.
Marchand, A., Chan, T. S., Snoeijer, J. H. & Andreotti, B. 2012 Air entrainment by contact lines of a solid plate plunged into a viscous fluid. Phys. Rev. Lett. 108, 204501.
Maroto, J. A., Pérez-Munuzuri, V. & Romero-Cano, M. S. 2007 Introductory analysis of Bénard–Marangoni convection. Eur. J. Phys. 28, 311.
Miles, J. & Henderson, D. 1990 Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143165.
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.
Myers, T. G. & Charpin, J. P. F. 2009 A mathematical model of the Leidenfrost effect on an axisymmetric droplet. Phys. Fluids 21, 063101.
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2005 Triplon modes of puddles. Phys. Rev. Lett. 94, 166102.
Noblin, X., Buguin, A. & Brochard-Wyart, F. 2009 Vibrations of sessile drops. Eur. Phys. J. Spec. Top. 166, 710.
Paquier, A., Moisy, F. & Rabaud, M. 2015 Surface deformations and wave generation by wind blowing over a viscous liquid. Phys. Fluids 27, 122103.
Paradis, P.-F. & Ishikawa, T. 2005 Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques. Japan J. Appl. Phys. 44, 5082.
Pomeau, Y., Le Berre, M., Celestini, F. & Frisch, T. 2012 The Leidenfrost effect: from quasi-spherical droplets to puddles. C. R. Méc. 340, 867881.
Quéré, D. 2013 Leidenfrost dynamics. Annu. Rev. Fluid Mech. 45, 197215.
Raux, P. S., Dupeux, G., Clanet, C. & Quéré, D. 2015 Successive instabilities of confined Leidenfrost puddles. Europhys. Lett. 112, 26002.
Rayleigh, Lord 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 7197.
Rayleigh, Lord 1916 LIX. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag. 32, 529546.
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33, 93127.
Shahriari, A., Wurz, J. & Bahadur, V. 2014 Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures. Langmuir 30, 1207412081.
Shen, C. L., Xie, W. J. & Wei, B. 2010a Parametric resonance in acoustically levitated water drops. Phys. Lett. A 374, 23012304.
Shen, C. L., Xie, W. J. & Wei, B. 2010b Parametrically excited sectorial oscillation of liquid drops floating in ultrasound. Phys. Rev. E 81, 046305.
Shirota, M., van Limbeek, M. A. J., Sun, C., Prosperetti, A. & Lohse, D. 2016 Dynamic Leidenfrost effect: relevant time and length scales. Phys. Rev. Lett. 116, 064501.
Smith, W. R. 2010 Modulation equations for strongly nonlinear oscillations of an incompressible viscous drop. J. Fluid Mech. 654, 141159.
Snezhko, A., Jacob, E. B. & Aranson, I. S. 2008 Pulsating–gliding transition in the dynamics of levitating liquid nitrogen droplets. New J. Phys. 10, 043034.
Snoeijer, J. H., Brunet, P. & Eggers, J. 2009 Maximum size of drops levitated by an air cushion. Phys. Rev. E 79, 036307.
Sobac, B., Rednikov, A., Dorbolo, S. & Colinet, P. 2014 Leidenfrost effect: Accurate drop shape modeling and refined scaling laws. Phys. Rev. E 90, 053011.
Sobac, B., Rednikov, A., Dorbolo, S. & Colinet, P. 2017 Self-propelled Leidenfrost drops on a thermal gradient: a theoretical study. Phys. Fluids 29, 082101.
Soto, D., Lagubeau, G., Clanet, C. & Quéré, D. 2016 Surfing on a herringbone. Phys. Rev. Fluids 1, 013902.
Strier, D. E., Duarte, A. A., Ferrari, H. & Mindlin, G. B. 2000 Nitrogen stars: morphogenesis of a liquid drop. Physica A 283, 261266.
Takaki, R. & Adachi, K. 1985 Vibration of a flattened drop. II. Normal mode analysis. J. Phys. Soc. Japan 54, 24622469.
Talari, V., Behar, P., Lu, Y., Haryadi, E. & Liu, D. 2018 Leidenfrost drops on micro/nanostructured surfaces. Front. Energy 12, 2242.
Terwagne, D. & Bush, J. W. M. 2011 Tibetan singing bowls. Nonlinearity 24, R51.
Tokugawa, N. & Takaki, R. 1994 Mechanism of self-induced vibration of a liquid drop based on the surface tension fluctuation. J. Phys. Soc. Japan 63, 17581768.
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108, 036101.
Trinh, P. H., Kim, H., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26, 051704.
Vakarelski, I. U., Chan, D. Y. C. & Thoroddsen, S. T. 2014 Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water. Soft Matt. 10, 56625668.
Vakarelski, I. U., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2011 Drag reduction by Leidenfrost vapor layers. Phys. Rev. Lett. 106, 214501.
Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y. C. & Thoroddsen, S. T. 2012 Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274.
Van Dam, H. 1992 Physics of nuclear reactor safety. Rep. Prog. Phys. 55, 2025.
Waitukaitis, S. R., Zuiderwijk, A., Souslov, A., Coulais, C. & van Hecke, M. 2017 Coupling the Leidenfrost effect and elastic deformations to power sustained bouncing. Nat. Phys. 13 (11), 1095.
Wong, C. Y. H., Adda-Bedia, M. & Vella, D. 2017 Non-wetting drops at liquid interfaces: from liquid marbles to Leidenfrost drops. Soft Matt. 13, 52505260.
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.
Xu, X. & Qian, T. 2013 Hydrodynamics of Leidenfrost droplets in one-component fluids. Phys. Rev. E 87, 043013.
Yoshiyasu, N., Matsuda, K. & Takaki, R. 1996 Self-induced vibration of a water drop placed on an oscillating plate. J. Phys. Soc. Japan 65, 20682071.
Zeisel, A., Stiassnie, M. & Agnon, Y. 2008 Viscous effects on wave generation by strong winds. J. Fluid Mech. 597, 343369.
Zhang, X. 1995 Capillary-gravity and capillary waves generated in a wind wave tank: observations and theories. J. Fluid Mech. 289, 51.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed