Skip to main content

Sensitivity of internal wave energy distribution over seabed corrugations to adjacent seabed features

  • Farid Karimpour (a1), Ahmad Zareei (a1), Joël Tchoufag (a1) and Mohammad-Reza Alam (a1)

Here we show that the distribution of energy of internal gravity waves over a patch of seabed corrugations strongly depends on the distance of the patch to adjacent seafloor features located downstream of the patch. Specifically, we consider the steady state energy distribution due to an incident internal wave arriving at a patch of seabed ripples neighbouring (i) another patch of ripples (i.e. a second patch) and (ii) a vertical wall. Seabed undulations with dominant wavenumber twice as large as overpassing internal waves reflect back part of the energy of the incident internal waves (Bragg reflection) and allow the rest of the energy to transmit downstream. In the presence of a neighbouring topography on the downstream side, the transmitted energy from the patch may reflect back; partially if the downstream topography is another set of seabed ripples or fully if it is a vertical wall. The reflected wave from the downstream topography is again reflected back by the patch of ripples through the same mechanism. This consecutive reflection goes on indefinitely, leading to a complex interaction pattern including constructive and destructive interference of multiply reflected waves as well as an interplay between higher mode internal waves resonated over the topography. We show here that when steady state is reached both the qualitative and quantitative behaviour of the energy distribution over the patch is a strong function of the distance between the patch and the downstream topography: it can increase or decrease exponentially fast along the patch or stay (nearly) unchanged. As a result, for instance, the local energy density in the water column can become an order of magnitude larger in certain areas merely based on where the downstream topography is. This may result in the formation of steep waves in specific areas of the ocean, leading to breaking and enhanced mixing. At a particular distance, the wall or the second patch may also result in a complete disappearance of the trace of the seabed undulations on the upstream and the downstream wave field.

Corresponding author
Email address for correspondence:
Hide All
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009a Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part I. Perturbation analysis. J. Fluid Mech. 624, 191224.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2009b Bragg resonance of waves in a two-layer fluid propagating over bottom ripples. Part II. Numerical simulation. J. Fluid Mech. 624, 225253.
Alam, M.-R., Liu, Y. & Yue, D. K. P. 2010 Oblique sub-and super-harmonic Bragg resonance of surface waves by bottom ripples. J. Fluid Mech. 643, 437447.
Ansong, J. K., Arbic, B. K., Buijsman, M. C., Richman, J. G., Shriver, J. F. & Wallcraft, A. J. 2015 Indirect evidence for substantial damping of low-mode internal tides in the open ocean. J. Geophys. Res.: Oceans 120, 60576071.
Baines, P. G. 1971a The reflexion of internal/inertial waves from bumpy surfaces. J. Fluid Mech. 46, 273291.
Baines, P. G. 1971b The reflexion of internal/inertial waves from bumpy surfaces. Part 2. Split reflexion and diffraction. J. Fluid Mech. 49, 113131.
Baines, P. G. 1998 Topographic Effects in Stratified Flows. Cambridge University Press.
Balmforth, N. J. & Peacock, T. 2009 Tidal conversion by supercritical topography. J. Phys. Oceanogr. 39, 19651974.
Bell, T. H. 1975a Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.
Bell, T. H. 1975b Topographically generated internal waves in the open ocean. J. Geophys. Res. 80, 320327.
Boczar-Karakiewicz, B., Amos, C. L. & Drapeau, G. 1990 The origin and stability of sand ridges on Sable Island Bank, Scotian Shelf. Cont. Shelf Res. 10, 683704.
Bragg, W. H. & Bragg, W. L. 1913 The reflection of X-rays by crystals. Proc. R. Soc. Lond. A 88, 428438.
Buck, W. R. & Poliakov, A. N. B. 1998 Abyssal hills formed by stretching oceanic lithosphere. Nature 392, 272275.
Bühler, O. & Holmes-Cerfon, M. 2011 Decay of an internal tide due to random topography in the ocean. J. Fluid Mech. 678, 271293.
Cacchione, D. & Wunsch, C. 1974 Experimental study of internal waves over a slope. J. Fluid Mech. 66, 223239.
Chang-shu, Y. & Jia-song, S. 1988 Tidal sand ridges on the East China Sea shelf. In Tide-Influenced Sedimentary Environments and Facies, pp. 2338. Springer.
Couston, L.-A., Guo, Q., Chamanzar, M. & Alam, M.-R. 2015 Fabry–Pérot resonance of water waves. Phys. Rev. E 92, 043015.
Couston, L.-A., Jalali, M. A. & Alam, M.-R. 2017 Shore protection by oblique seabed bars. J. Fluid Mech. 815, 481510.
Couston, L.-A., Liang, Y. & Alam, M.-R.2016 Oblique internal-wave chain resonance over seabed corrugations, arXiv:1604.07308.
Cox, C. & Sandstrom, H. 1962 Coupling of internal and surface waves in water of variable depth. J. Oceanogr. Soc. Japan 18, 499513.
Eriksen, C. C. 1982 Observations of internal wave reflection off sloping bottoms. J. Geophys. Res.: Oceans 87, 525538.
Fabry, C. & Pérot, A. 1897 Sur les franges des lames minces argentees et leur application a la mesure de petites epaisseurs d’air. Ann. Chim. Phys. 12, 459501.
Fermi, E. & Marshall, L. 1947 Interference phenomena of slow neutrons. Phys. Rev. 71, 666.
Fringer, O. B., Gerritsen, M. & Street, R. L. 2006 An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 14, 139173.
Fringer, O. B. & Zhang, Z. 2008 High-resolution simulations of nonlinear internal gravity waves in the South China Sea. In DoD HPCMP Users Group Conference, 2008. DOD HPCMP UGC, pp. 4346. IEEE.
Garabato, A. C. N., Polzin, K. L., King, B. A., Heywood, K. J. & Visbeck, M. 2004 Widespread intense turbulent mixing in the Southern Ocean. Science 303, 210213.
Gargett, A. E. & Holloway, G. 1984 Dissipation and diffusion by internal wave breaking. J. Mar. Res. 42, 1527.
Garrett, C. & Munk, W. 1972 Space-time scales of internal waves. Geophys. Astrophys. Fluid Dyn. 3, 225264.
Garrett, C. & Munk, W. 1975 Space-time scales of internal waves: a progress report. J. Geophys. Res. 80, 291297.
Guo, Y. & Holmes-Cerfon, M. 2016 Internal wave attractors over random, small-amplitude topography. J. Fluid Mech. 787, 148174.
Hecht, F. 2012 New development in FreeFem++. J. Numer. Math. 20, 251265.
Kang, D. & Fringer, O. 2012 Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr. 42, 272290.
Klymak, J. M., Legg, S. M. & Pinkel, R. 2010 High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech. 644, 321336.
Klymak, J. M., Pinkel, R. & Rainville, L. 2008 Direct breaking of the internal tide near topography: Kaena ridge, Hawaii. J. Phys. Oceanogr. 38, 380399.
Kranenburg, C., Pietrzak, J. D. & Abraham, G. 1991 Trapped internal waves over undular topography. J. Fluid Mech. 226, 205217.
Kryuchkyan, G. & Hatsagortsyan, K. 2011 Bragg scattering of light in vacuum structured by strong periodic fields. Phys. Rev. Lett. 107, 14.
Kundu, P. K., Cohen, I. M. & Dowling, D. R. 2012 Fluid Mechanics. Academic.
Labeur, R. J. & Pietrzak, J. D. 2004 Computation of non-hydrostatic internal waves over undular topography. In Shallow Flows, pp. 187194.
Lamb, K. G. 2014 Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46, 231254.
Ledwell, J. R., Montgomery, E. T., Polzin, K. L., St. Laurent, L. C., Schmitt, R. W. & Toole, J. M. 2000 Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179182.
Li, Y. & Mei, C. C. 2014 Scattering of internal tides by irregular bathymetry of large extent. J. Fluid Mech. 747, 481505.
Liang, Y., Zareei, A. & Alam, M.-R. 2017 Inherently unstable internal gravity waves due to resonant harmonic generation. J. Fluid Mech. 811, 400420.
Lim, K., Ivey, G. N. & Jones, N. L. 2010 Experiments on the generation of internal waves over continental shelf topography. J. Fluid Mech. 663, 385400.
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F.-P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557561.
Mathur, M., Carter, G. S. & Peacock, T. 2014 Topographic scattering of the low-mode internal tide in the deep ocean. J. Geophys. Res.: Oceans 119, 21652182.
Mathur, M. & Peacock, T. 2010 Internal wave interferometry. Phys. Rev. Lett. 104, 118501.
Mei, C. C. 1985 Resonant reflection of surface water waves by periodic sandbars. J. Fluid Mech. 152, 315335.
Menard, H. W. 1964 Marine Geology of the Pacific. McGraw-Hill.
Mied, R. P. & Dugan, J. P. 1976 Internal wave reflexion from a sinusoidally corrugated surface. J. Fluid Mech. 76, 259272.
Müller, P. & Liu, X. 2000a Scattering of internal waves at finite topography in two dimensions. Part I: theory and case studies. J. Phys. Oceanogr. 30, 532549.
Müller, P. & Liu, X. 2000b Scattering of internal waves at finite topography in two dimensions. Part II: spectral calculations and boundary mixing. J. Phys. Oceanogr. 30, 550563.
Nicolas, A. 2013 The Mid-oceanic Ridges: Mountains Below Sea Level. Springer Science & Business Media.
Pietrzak, J. & Labeur, R. J. 2004 Trapped internal waves over undular topography in a partially mixed estuary. Ocean Dyn. 54, 315323.
Pietrzak, J. D., Kranenburg, C., Abraham, G., Kranenborg, B. & van der Wekken, A. 1991 Internal wave activity in Rotterdam waterway. J. Hyd. Engng 117, 738757.
Roberts, J. 1975 Internal Gravity Waves in the Ocean. Marcel Dekker.
Sigman, D. M., Jaccard, S. L. & Haug, G. H. 2004 Polar ocean stratification in a cold climate. Nature 428, 5963.
Simarro, G., Guillén, J., Puig, P., Ribó, M., Iacono, C. L., Palanques, A., Muñoz, A., Durán, R. & Acosta, J. 2015 Sediment dynamics over sand ridges on a tideless mid-outer continental shelf. Mar. Geol. 361, 2540.
Simpson, J. H. 1971 Density stratification and microstructure in the western Irish sea. Deep Sea Res. Oceanogr. Abst. 18, 309319.
Stastna, M. 2011 Resonant generation of internal waves by short length scale topography. Phys. Fluids 23, 110.
Thorpe, S. A. 1966 On wave interactions in a stratified fluid. J. Fluid Mech. 24, 737751.
Wang, B., Fringer, O. B., Giddings, S. N. & Fong, D. A. 2009 High-resolution simulations of a macrotidal estuary using SUNTANS. Ocean Model. 28, 167192.
Wu, Z., Jin, X., Li, J., Zheng, Y. & Wang, X. 2005 Linear sand ridges on the outer shelf of the East China Sea. Chin. Sci. Bulletin 50, 25172528.
Yu, J. & Mei, C. C. 2000 Do longshore bars shelter the shore? J. Fluid Mech. 404, 251268.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed