Skip to main content Accessibility help
×
×
Home

Shallow-water waves, the Korteweg-deVries equation and solitons

  • N. J. Zabusky (a1) and C. J. Galvin (a2)
Abstract

A comparison of laboratory experiments in a shallow-water tank driven by an oscillating piston and numerical solutions of the Korteweg-de Vries (KdV) equation show that the latter can accurately describe slightly dissipative wavepropagation for Ursell numbers (h1L2/h03) up to 800. This is an input-output experiment, where the initial condition for the KdV equation is obtained from upstream (station 1) data. At a downstream location, the number of crests and troughs and their phases (or relative locations within a period) agree quantitatively with numerical solutions. The crest-to-trough amplitudes disagree somewhat, as they are more sensitive to dissipative forces. This work firmly establishes the soliton concept as necessary for treating the propagation of shallow-water waves of moderate amplitude in a low-dissipation environment.

Copyright
References
Hide All
Galvin, C. J. 1968 Finite amplitude, shallow-water waves of periodically recurring form. U.S. Army Coastal Engineering Research Center.
Gardner, C. S., Greene, J. M., Kruskal, M. D. & Muira, R. M. 1967 Method for solving the Korteweg-deVries equation Phys. Rev. Lett. 19, 1095.
Gardner, C. S. & Morikawa, G. K. 1969 Similarity in the asymptotic behaviour of collision-free hydromagnetic waves and water waves. Courant Institute of Mathematical Science Report NYO 9082.
Goda, Y., Takeda, H. & Moriya, Y. 1967 Laboratory investigation on wave transmission over breakwaters. Port and Harbour Research Institute, Yokusaka, Japan, Report 13.
Hirota, R. & Suzuki, K. 1970 Studies on lattice solitons by using electrical networks J. Phys. Soc. Japan, 28, 1366.
Ikezi, H., Taylor, R. J. & Baker, D. R. 1970 Formation and interaction of ion-acoustic solitary waves Phys. Rev. Lett. 25, 11.
Korteweg, D. J. & deVries, G. 1895 On the change of form on a new type of long stationary waves Phil. Mag. 39, 422.
Kruskal, M. D., Miura, R. M., Gardner, C. S. & Zabusky, N. J. 1970 Korteweg-deVries equation and generalizations 5. Uniqueness and non-existence of polynomial conservations laws J. Math. Phys. 11, 1952.
Madsen, O. S. & Mei, C. C. 1969 The transformation of a solitary wave over an uneven bottom J. Fluid Mech. 39, 781.
Madsen, O. S., Mei, C. C. & Savage, R. P. 1970 The evolution of time-periodic long waves of finite amplitude J. Fluid Mech. 44, 195.
Miura, R. M., Gardner, C. S. & Kruskal, M. D. 1968 Korteweg-deVries equation and generalizations. 2. Existence of conservation laws and constants of motion J. Math. Phys. 9, 1204.
Multer, R. H. & Galvin, C. J. 1967 Secondary waves: Periodic waves of non-permanent form. (Abstract.) Trans. Am. Geophys. Union, 48, 139.
Peregrine, D. H. 1966 Calculations of the development of an undular bore J. Fluid Mech. 25, 321.
Su, C. S. & Gardner, C. S. 1969 The Korteweg-deVries equation and generalizations. 3. Derivation of the Korteweg-deVries equation and Burgers' equation J. Math. Phys. 10, 536.
Tappert, F. & Tang, J. Y. T. 1969 Nonlinear interaction of finite amplitude waves, 1, 2. Bell Telephone Laboratories Internal Memorandum.
Tappert, F. & Varma, C. 1970 Asymptotic theory of self-trapping of heat pulses in solids Phys. Rev. Lett. 25, 1108.
Washimi, H. & Taniuti, T. 1966 Propagation of ion-acoustic solitary waves of small amplitude Phys. Rev. Lett. 17, 996.
Zabusky, N. J. 1967 A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. Nonlinear Partial Differential Equations (ed. W. Ames). New York: Academic Press.
Zabusky, N. J. 1968 Solitons and bound states of the time-independent Schrödinger equation Phys. Rev. 168, 124.
Zabusky, N. J., Deem, G. S. & Kruskal, M. D. 1965 Formation, propagation and interaction of solitons (numerical solutions of differential equations describing wave motion in nonlinear dispersive media). (Film.) Bell Telephone Laboratories, Murray Hill, N.J.
Zabusky, N. J. & Galvin, C. J. 1968 Secondary waves as solitons. (Abstract.) Trans. Am. Geophys. Union, 49, 209.
Zabusky, N. J. & Kruskal, M. D. 1965 Interaction of solitons in a collisionless plasma and the recurrence of initial states Phys. Rev. Lett. 15, 240243.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed