Skip to main content Accessibility help

Shape dynamics and scaling laws for a body dissolving in fluid flow

  • Jinzi Mac Huang (a1), M. Nicholas J. Moore (a1) (a2) and Leif Ristroph (a1)


While fluid flows are known to promote dissolution of materials, such processes are poorly understood due to the coupled dynamics of the flow and the receding surface. We study this moving boundary problem through experiments in which hard candy bodies dissolve in laminar high-speed water flows. We find that different initial geometries are sculpted into a similar terminal form before ultimately vanishing, suggesting convergence to a stable shape–flow state. A model linking the flow and solute concentration shows how uniform boundary-layer thickness leads to uniform dissolution, allowing us to obtain an analytical expression for the terminal geometry. Newly derived scaling laws predict that the dissolution rate increases with the square root of the flow speed and that the body volume vanishes quadratically in time, both of which are confirmed by experimental measurements.


Corresponding author

Email address for correspondence:


Hide All
Bai, G. E. & Armenante, P. M. 2009 Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing. J. Pharm. Sci. 98 (4), 15111531.
Blumberg, P. N. & Curl, R. L. 1974 Experimental and theoretical studies of dissolution roughness. J. Fluid Mech. 65 (04), 735751.
Childress, S. 2009 An Introduction to Theoretical Fluid Mechanics, Courant Lecture Notes in Mathematics, vol. 19. Courant Institute of Mathematical Sciences. AMS.
Colombani, J. 2008 Measurement of the pure dissolution rate constant of a mineral in water. Geochim. Cosmochim. Acta 72 (23), 56345640.
Daccord, G. 1987 Chemical dissolution of a porous medium by a reactive fluid. Phys. Rev. Lett. 58 (5), 479482.
Daccord, G. & Lenormand, R. 1987 Fractal patterns from chemical dissolution. Nature 325 (6099), 4143.
Dokoumetzidis, A. & Macheras, P. 2006 A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Intl J. Pharm. 321 (1), 111.
Duda, J. L. & Vrentas, J. S. 1971 Heat or mass transfer-controlled dissolution of an isolated sphere. Intl J. Heat Mass Transfer 14 (3), 395407.
Feldman, S. 1959 On the instability theory of the melted surface of an ablating body when entering the atmosphere. J. Fluid Mech. 6 (01), 131155.
Fokas, A. S. & Ablowitz, M. J. 2003 Complex Variables: Introduction and Applications. Cambridge University Press.
Ford, D. C. & Williams, P. W. 2007 Karst Hydrogeology and Geomorphology. John Wiley & Sons.
Garner, F. H. & Grafton, R. W. 1954 Mass transfer in fluid flow from a solid sphere. Proc. R. Soc. Lond. A 224 (1156), 6482.
Garner, F. H. & Hoffman, J. M. 1961 Mass transfer from single solid spheres by free convection. AIChE J. 7 (1), 148152.
Garner, F. H. & Keey, R. B. 1958 Mass-transfer from single solid spheres I: transfer at low Reynolds numbers. Chem. Engng Sci. 9 (2), 119129.
Garner, F. H. & Suckling, R. D. 1958 Mass transfer from a soluble solid sphere. AIChE J. 4 (1), 114124.
Grijseels, H., Crommelin, D. J. A. & De Blaey, C. J. 1981 Hydrodynamic approach to dissolution rate. Pharm. Weekbl. 3 (1), 10051020.
Hanratty, T. J. 1981 Stability of surfaces that are dissolving or being formed by convective diffusion. Annu. Rev. Fluid Mech. 13 (1), 231252.
Hao, Y. L. & Tao, Y.-X. 2002 Heat transfer characteristics of melting ice spheres under forced and mixed convection. J. Heat Transfer 124 (5), 891903.
Heitz, E. 1991 Chemo-mechanical effects of flow on corrosion. Corrosion 47 (2), 135145.
Hureau, J., Brunon, E. & Legallais, P. 1996 Ideal free streamline flow over a curved obstacle. J. Comput. Appl. Maths 72 (1), 193214.
Jeschke, A. A., Vosbeck, K. & Dreybrodt, W. 2001 Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim. Cosmochim. Acta 65 (1), 2734.
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice-Hall.
Linton, M. & Sutherland, K. L. 1960 Transfer from a sphere into a fluid in laminar flow. Chem. Engng Sci. 12 (3), 214229.
Mahmood, T. & Merkin, J. H. 1988 Similarity solutions in axisymmetric mixed-convection boundary-layer flow. J. Engng Maths 22 (1), 7392.
Mbogoro, M. M., Snowden, M. E., Edwards, M. A., Peruffo, M. & Unwin, P. R. 2011 Intrinsic kinetics of gypsum and calcium sulfate anhydrite dissolution: surface selective studies under hydrodynamic control and the effect of additives. J. Phys. Chem. 115 (20), 1014710154.
Meakin, P. & Jamtveit, B. 2010 Geological pattern formation by growth and dissolution in aqueous systems. Proc. R. Soc. Lond. A 466 (2115), 659694.
Missel, P. J., Stevens, L. E. & Mauger, J. W. 2004 Reexamination of convective diffusion/drug dissolution in a laminar flow channel: accurate prediction of dissolution rate. Pharmaceut. Res. 21 (12), 23002306.
Moore, M. N. J., Ristroph, L., Childress, S., Zhang, J. & Shelley, M. J. 2013 Self-similar evolution of a body eroding in a fluid flow. Phys. Fluids 25 (11), 116602.
Nelson, K. G. & Shah, A. C. 1975 Convective diffusion model for a transport-controlled dissolution rate process. J. Pharm. Sci. 64 (4), 610614.
Noyes, A. A. & Whitney, W. R. 1897 The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19 (12), 930934.
Ristroph, L., Moore, M. N. J., Childress, S., Shelley, M. J. & Zhang, J. 2012 Sculpting of an erodible body by flowing water. Proc. Natl Acad. Sci. USA 109 (48), 1960619609.
Schlichting, H. & Gersten, K. 2000 Boundary-Layer Theory. Springer.
Sparrow, E., Eichhorn, R. & Gregg, J. 2004 Combined forced and free convection in a boundary layer flow. Phys. Fluids 2 (3), 319328.
Steinberger, R. L. & Treybal, R. E. 1960 Mass transfer from a solid soluble sphere to a flowing liquid stream. AIChE J. 6 (2), 227232.
Vanier, C. R. & Tien, C. 1970 Free convection melting of ice spheres. AIChE J. 16 (1), 7682.
Verniani, F. 1961 On meteor ablation in the atmosphere. Il Nuovo Cimento 19 (3), 415442.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Shape dynamics and scaling laws for a body dissolving in fluid flow

  • Jinzi Mac Huang (a1), M. Nicholas J. Moore (a1) (a2) and Leif Ristroph (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.