Skip to main content Accesibility Help
×
×
Home

Shape of optimal active flagella

  • Eric Lauga (a1) and Christophe Eloy (a1) (a2)
Abstract

Many eukaryotic cells use the active waving motion of flexible flagella to self-propel in viscous fluids. However, the criterion governing the selection of particular flagellar waveforms among all possible shapes has proved elusive so far. To address this question, we derive computationally the optimal shape of an internally forced periodic planar flagellum deforming as a travelling wave. The optimum is here defined as the shape leading to a given swimming speed with minimum energetic cost. To calculate the energetic cost, we consider the irreversible internal power expended by the molecular motors forcing the flagellum, only a portion of which is dissipated in the fluid. This optimization approach allows us to derive a family of shapes depending on a single dimensionless number quantifying the relative importance of elastic to viscous effects: the Sperm number. The computed optimal shapes are found to agree with the waveforms observed on spermatozoon of marine organisms, thus suggesting that these eukaryotic flagella might have evolved to be mechanically optimal.

Copyright
Corresponding author
Email address for correspondence: Christophe.Eloy@irphe.univ-mrs.fr
Footnotes
Hide All

Current address: Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK. Email address for correspondence: e.lauga@damtp.cam.ac.uk

Footnotes
References
Hide All
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. 2007 Molecular Biology of the Cell, 5th edn. Garland Science.
Alexander, R. McN. 1992 A model of bipedal locomotion on compliant legs. Phil. Trans. R. Soc. Lond. B 338, 189198.
Alouges, F., DeSimone, A. & Lefebvre, A. 2008 Optimal strokes for low Reynolds number swimmers: an example. J. Nonlin. Sci. 18 (3), 277302.
Audoly, B. & Pomeau, Y. 2010 Elasticity and Geometry. Oxford University Press.
Avron, J. E. & Raz, O. 2008 A geometric theory of swimming: Purcell’s swimmer and its symmetrized cousin. New J. Phys. 10, 063016.
Bray, D. 2000 Cell Movements. Garland Publishing.
Brennen, C. & Winnet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.
Brokaw, C. J. 1965 Non-sinusoidal bending waves of sperm flagella. J. Expl Biol. 43, 155.
Brokaw, C. J. & Wright, L. 1963 Bending waves of the posterior flagellum of Cerratum. Science 142, 11691170.
Camalet, S., Julicher, F. & Prost, J. 1999 Self-organized beating and swimming of internally driven filaments. Phys. Rev. Lett. 82, 15901593.
Childress, S. 1981 Mechanics of Swimming and Flying. Cambridge University Press.
Childress, S. 2012 A thermodynamic efficiency for stokesian swimming. J. Fluid Mech. 705, 7797.
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.
Eloy, C. & Lauga, E. 2012 Kinematics of the most efficient cilium. Phys. Rev. Lett. 109, 038101.
Fujita, T. & Kawai, T. 2001 Optimum shape of a flagellated microorganism. JSME Intl J. C 44, 952957.
Gittes, F., Mickey, B., Nettleton, J. & Howard, J. 1993 Flexural rigidity of microtubules and actin-filaments measured from thermal fluctuations in shape. J. Cell Biol. 120, 923934.
Gray, J. & Hancock, G. J. 1955 The propulsion of sea-urchin spermatozoa. J. Expl Biol. 32, 802814.
Higdon, J. J. L. 1979a Hydrodynamic analysis of flagellar propulsion. J. Fluid Mech. 90, 685711.
Higdon, J. J. L. 1979b Hydrodynamics of flagellar propulsion – Helical waves. J. Fluid Mech. 94, 331351.
Hines, M. & Blum, J. J. 1983 Three-dimensional mechanics of eukaryotic flagella. Biophys. J. 41, 6779.
Lauga, E. 2011 Life around the scallop theorem. Soft Matt. 7, 30603065.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.
Leshansky, A. M., Kenneth, O., Gat, O. & Avron, J. E. 2007 A frictionless microswimmer. New J. Phys. 9, 145.
Lighthill, J. 1975 Mathematical Biofluiddynamics. SIAM.
Michelin, S. & Lauga, E. 2010 Efficiency optimization and symmetry-breaking in an envelope model for ciliary locomotion. Phys. Fluids 22, 111901.
Michelin, S. & Lauga, E. 2011 Optimal feeding is optimal swimming for all Péclet numbers. Phys. Fluids 23, 101901.
Michelin, S. & Lauga, E. 2013 Unsteady feeding and optimal strokes of model ciliates. J. Fluid Mech. 715, 131.
Osterman, N. & Vilfan, A. 2011 Finding the ciliary beating pattern with optimal efficiency. Proc. Natl Acad. Sci. USA 108, 1572715732.
Pironneau, O. & Katz, D. F. 1974 Optimal swimming of flagellated micro-organisms. J. Fluid Mech. 66, 391415.
Pironneau, O. & Katz, D. F. 1975 Optimal swimming of motion of flagella. In Swimming and Flying in Nature (ed. Wu, T. Y., Brokaw, C. J. & Brennen, C.), vol. 1, pp. 161172. Plenum.
Purcell, E. M. 1977 Life at low Reynolds number. Am. J. Phys. 45, 311.
Shapere, A. & Wilczek, F. 1987 Self-propulsion at low Reynolds number. Phys. Rev. Lett. 58, 20512054.
Shapere, A. & Wilczek, F. 1989a Geometry of self-propulsion at low Reynolds number. J. Fluid Mech. 198, 557585.
Shapere, A. & Wilczek, F. 1989b Efficiencies of self-propulsion at low Reynolds number. J. Fluid Mech. 198, 587599.
Spagnolie, S. E. & Lauga, E. 2010 The optimal elastic flagellum. Phys. Fluids 22, 031901.
Spagnolie, S. E. & Lauga, E. 2011 Comparative hydrodynamics of bacterial polymorphism. Phys. Rev. Lett. 106, 058103.
Tam, D. & Hosoi, A. E. 2007 Optimal stroke patterns for purcell’s three-link swimmer. Phys. Rev. Lett. 98, 068105.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed