Ball, R. C. & Melrose, J. R.
1997
A simulation technique for many spheres in quasi-static motion under frame-invariant pair drag and Brownian forces. Physica A
247, 444–472.
Batchelor, G. K.
1970
The stress system in a suspension of force-free particles. J. Fluid Mech.
41, 545–570.
Batchelor, G. K. & Green, J. T.
1972
The determination of the bulk stress in a suspension of spherical particles to order c
^{2}
. J. Fluid Mech.
56, 401–427.
Bingham, C.
1974
An antipodally symmetric distribution on the sphere. Ann. Stat.
2, 1201–1225.
Blanc, F., Lemaire, E., Meunier, A. & Peters, F.
2013
Microstructure in sheared non-Brownian concentrated suspensions. J. Rheol.
57, 273–292.
Blanc, F., Lemaire, E. & Peters, F.
2014
Tunable fall velocity of a dense ball in oscillatory cross-sheared concentrated suspensions. J. Fluid Mech.
746, R4.
Blanc, F., Peters, F. & Lemaire, E.
2011a
Experimental signature of the pair trajectories of rough spheres in the shear-induced microstructure in noncolloidal suspensions. Phys. Rev. Lett.
107, 208302.
Blanc, F., Peters, F. & Lemaire, E.
2011b
Local transient rheological behavior of concentrated suspensions. J. Rheol.
55, 835–854.
Boyer, F., Guazzelli, É. & Pouliquen, O.
2011a
Unifying suspension and granular rheology. Phys. Rev. Lett.
107, 188301.
Boyer, F., Pouliquen, O. & Guazzelli, É.
2011b
Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech.
686, 5–25.
Brady, J. F. & Bossis, G.
1988
Stokesian dynamics. Annu. Rev. Fluid Mech.
20, 111–157.
Brown, E. & Jaeger, H. M.
2009
Dynamic jamming point for shear thickening suspensions. Phys. Rev. Lett.
103, 086001.
Brown, E. & Jaeger, H. M.
2012
The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol.
56, 875–923.
Castle, J., Farid, A. & Woodcock, L. V.
1996
The effect of surface friction on the rheology of hard-sphere colloids. Prog. Colloid Polym. Sci.
100, 259–265.
Chaubal, C. V. & Leal, L. G.
1998
A closure approximation for liquid-crystalline polymer models based on parametric density estimation. J. Rheol.
42, 177–201.
Cheng, J., Jia, X. Z. & Wang, Y. B.
2007
Numerical differentiation and its applications. Inverse Probl. Sci. Eng.
15, 339–357.
Cheng, X., McCoy, J. H., Israelachvili, J. N. & Cohen, I.
2011
Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science
333, 1276–1279.
Clavaud, C., Bérut, A., Metzger, B. & Forterre, Y.
2017
Revealing the frictional transition in shear-thickening suspensions. Proc. Natl Acad. Sci. USA
114, 5147–5152.
Comtet, J., Chatté, G., Niguès, A., Bocquet, L., Siria, A. & Colin, A.
2017
Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun.
8, 15633.
Couturier, É., Boyer, F., Pouliquen, O. & Guazzelli, É.
2011
Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech.
686, 26–39.
Cundall, P. A. & Strack, O. D. L.
1979
A discrete numerical model for granular assemblies. Géotechnique
29, 47–65.
Dai, S.-C., Bertevas, E., Qi, F. & Tanner, R. I.
2013
Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices. J. Rheol.
57, 493–510.
Dbouk, T., Lobry, L. & Lemaire, E.
2013
Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech.
715, 239–272.
Denn, M. M. & Morris, J. F.
2014
Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Eng.
5, 203–228.
Fernandez, N., Mani, R., Rinaldi, D., Kadau, D., Mosquet, M., Lombois-Burger, H., Cayer-Barrioz, J., Herrmann, H. J., Spencer, N. D. & Isa, L.
2013
Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett.
111, 108301.
Frankel, N. A. & Acrivos, A.
1967
On the viscosity of a concentrated suspension of solid spheres. Chem. Engng Sci.
22, 847–853.
Gadala-Maria, F. & Acrivos, A.
1980
Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol.
24, 799–814.
Gallier, S., Lemaire, E., Peters, F. & Lobry, L.
2014
Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech.
757, 514–549.
Giesekus, H.
1982
A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech.
11, 69–109.
Goddard, J. D.
2006
A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech.
568, 1–17.
Goddard, J. D.
2008
A weakly nonlocal anisotropic fluid model for inhomogeneous Stokesian suspensions. Phys. Fluids
20, 040601.
Goddard, J. D.
2014
Continuum modeling of granular media. Appl. Mech. Rev.
66, 050801.
Gurnon, A. K. & Wagner, N. J.
2015
Microstructure and rheology relationships for shear thickening colloidal dispersions. J. Fluid Mech.
769, 242–276.
Guy, B. M., Hermes, M. & Poon, W. C. K.
2015
Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett.
115, 088304.
Hand, G. L.
1962
A theory of anisotropic fluids. J. Fluid Mech.
13, 33–46.
Hinch, E. J. & Leal, L. G.
1975
Constitutive equations in suspension mechanics. Part 1. General formulation. J. Fluid Mech.
71, 481–495.
Hinch, E. J. & Leal, L. G.
1976
Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid Mech.
76, 187–208.
Hwang, W. R. & Hulsen, M. A.
2006
Direct numerical simulations of hard particle suspensions in planar elongational flow. J. Non-Newtonian Fluid Mech.
136, 167–178.
Jeffrey, D. J.
1992
The calculation of the low Reynolds number resistance functions for two unequal spheres. Phys. Fluids A
4, 16–29.
Jeffrey, D. J. & Onishi, Y.
1984
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech.
139, 261–290.
Johnson, M. W. & Segalman, D.
1977
A model for viscoelastic fluid behavior which allows non-affine deformation. J. Non-Newtonian Fluid Mech.
2, 255–270.
Kanatani, K.-I.
1984
Distribution of directional data and fabric tensors. Int. J. Eng. Sci.
22, 149–164.
Kolli, V. G., Pollauf, E. J. & Gadala-Maria, F.
2002
Transient normal stress response in a concentrated suspension of spherical particles. J. Rheol.
46, 321–334.
Kraynik, A. M. & Reinelt, D. A.
1992
Extensional motions of spatially periodic lattices. Intl J. Multiphase Flow
18, 1045–1059.
Kuzuu, N. & Doi, M.
1983
Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J. Phys. Soc. Japan
52, 3486–3494.
Larson, R. G.
2013
Constitutive Equations for Polymer Melts and Solutions, Butterworths Series in Chemical Engineering. Butterworth-Heinemann.
Lees, A. W. & Edwards, S. F.
1972
The computer study of transport processes under extreme conditions. J. Phys. C Solid State Phys.
5, 1921–1928.
Lin, N. Y. C., Guy, B. M., Hermes, M., Ness, C., Sun, J., Poon, W. C. K. & Cohen, I.
2015
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett.
115, 228304.
Lin, N. Y. C., Ness, C., Cates, M. E., Sun, J. & Cohen, I.
2016
Tunable shear thickening in suspensions. Proc. Natl Acad. Sci. USA
113, 10774–10778.
Lootens, D., Van Damme, H., Hémar, Y. & Hébraud, P.
2005
Dilatant flow of concentrated suspensions of rough particles. Phys. Rev. Lett.
95, 268302.
Luding, S.
2008
Cohesive, frictional powders: contact models for tension. Granul. Matt.
10, 235–246.
Magnanimo, V. & Luding, S.
2011
A local constitutive model with anisotropy for ratcheting under 2D axial-symmetric isobaric deformation. Granul. Matt.
13, 225–232.
Mari, R., Seto, R., Morris, J. F. & Denn, M. M.
2014
Shear thickening, frictionless and frictional rheologies. J. Rheol.
58, 1693–1724.
Mari, R., Seto, R., Morris, J. F. & Denn, M. M.
2015
Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Proc. Natl Acad. Sci. USA
112, 15326–15330.
Morris, J. F. & Katyal, B.
2002
Microstructure from simulated Brownian suspension flows at large shear rate. Phys. Fluids
14, 1920–1937.
Narumi, T., See, H., Honma, Y., Hasegawa, T., Takahashi, T. & Phan-Thien, N.
2002
Transient response of concentrated suspensions after shear reversal. J. Rheol.
46, 295–305.
Nazockdast, E. & Morris, J. F.
2012
Microstructural theory and the rheology of concentrated colloidal suspensions. J. Fluid Mech.
713, 420–452.
Nazockdast, E. & Morris, J. F.
2013
Pair-particle dynamics and microstructure in sheared colloidal suspensions: simulation and Smoluchowski theory. Phys. Fluids
25, 070601.
Ness, C. & Sun, J.
2016
Two-scale evolution during shear reversal in dense suspensions. Phys. Rev. E
93, 012604.
Noll, W.1955 On the continuity of the solid and fluid states. PhD thesis, Indiana University.
Peters, F., Ghigliotti, G., Gallier, S., Blanc, F., Lemaire, E. & Lobry, L.
2016a
Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study. J. Rheol.
60, 715–732.
Peters, I. R., Majumdar, S. & Jaeger, H. M.
2016b
Direct observation of dynamic shear jamming in dense suspensions. Nature
532, 214–217.
Phan-Thien, N.
1995
Constitutive equation for concentrated suspensions in Newtonian liquids. J. Rheol.
39, 679–695.
Phan-Thien, N., Fan, X.-J. & Khoo, B. C.
1999
A new constitutive model for monodispersed suspensions of spheres at high concentrations. Rheol. Acta
38, 297–304.
Qi, L.
2006
Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J. Symb. Comput.
41, 1309–1327.
Rivlin, R.
1955
Further remarks on the stress-deformation relations for isotropic materials. Indiana Univ. Math. J.
4, 681–702.
Seto, R., Giusteri, G. G. & Martiniello, A.
2017
Microstructure and thickening of dense suspensions under extensional and shear flows. J. Fluid Mech.
825, R3.
Seto, R., Mari, R., Morris, J. F. & Denn, M. M.
2013
Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett.
111, 218301.
Singh, A. & Nott, P. R.
2003
Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech.
490, 293–320.
Stickel, J. J., Phillips, R. J. & Powell, R. L.
2006
A constitutive model for microstructure and total stress in particulate suspensions. J. Rheol.
50, 379–413.
Sun, J. & Sundaresan, S.
2011
A constitutive model with microstructure evolution for flow of rate-independent granular materials. J. Fluid Mech.
682, 590–616.
Wagner, N. J. & Ackerson, B. J.
1992
Analysis of nonequilibrium structures of shearing colloidal suspensions. J. Chem. Phys.
97, 1473–1483.
Zarraga, I. E., Hill, D. A. & Leighton, D. T.
2000
The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol.
44, 185–220.