Skip to main content
×
Home
    • Aa
    • Aa

Shear-driven circulation patterns in lipid membrane vesicles

  • Francis G. Woodhouse (a1) and Raymond E. Goldstein (a1)
Abstract
Abstract

Recent experiments have shown that when a near-hemispherical lipid vesicle attached to a solid surface is subjected to a simple shear flow it exhibits a pattern of membrane circulation much like a dipole vortex. This is in marked contrast to the toroidal circulation that would occur in the related problem of a drop of immiscible fluid attached to a surface and subjected to shear. This profound difference in flow patterns arises from the lateral incompressibility of the membrane, which restricts the observable flows to those in which the velocity field in the membrane is two-dimensionally divergence free. Here we study these circulation patterns within the simplest model of membrane fluid dynamics. A systematic expansion of the flow field based on Papkovich–Neuber potentials is developed for general viscosity ratios between the membrane and the surrounding fluids. Comparison with experimental results (Vézy, Massiera & Viallat, Soft Matt., vol. 3, 2007, pp. 844–851) is made, and it is shown how such studies could allow measurements of the membrane viscosity. Issues of symmetry-breaking and pattern selection are discussed.

Copyright
Corresponding author
Email address for correspondence: R.E.Goldstein@damtp.cam.ac.uk
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. M. Abkarian & A. Viallat 2008 Vesicles and red blood cells in shear flow. Soft Matt. 4 (4), 653657.

4. F. Brochard-Wyart & P. G. de Gennes 2002 Adhesion induced by mobile binders: dynamics. Proc. Natl Acad. Sci. USA 99, 78547859.

5. B. A. Camley , C. Esposito , T. Baumgart & F. L. Brown 2010 Lipid bilayer domain fluctuations as a probe of membrane viscosity. Biophys. J. 99, L44L46.

6. J. Deschamps , V. Kantsler & V. Steinberg 2009 Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102 (11), 118105.

7. R. Dimova , C. Dietrich , A. Hadjiisky , K. Danov & B. Pouligny 1999 Falling ball viscosimetry of giant vesicle membranes: finite-size effects. Eur. Phys. J. B 12 (4), 589598.

9. S. Feng , R. Skalak & S. Chien 1989 Velocity distribution on the membrane of a tank-treading red blood cell. Bull. Math. Biol. 51 (4), 449465.

11. M. L. Henle & A. J. Levine 2010 Hydrodynamics in curved membranes: The effect of geometry on particulate mobility. Phys. Rev. E 81 (1), 011905.

12. M. L. Henle , R. McGorty , A. B. Schofield , A. D. Dinsmore & A. J. Levine 2008 The effect of curvature and topology on membrane hydrodynamics. Europhys. Lett. 84, 48001.

13. V. Kantsler , E. Segre & V. Steinberg 2007 Vesicle dynamics in time-dependent elongation flow: Wrinkling instability. Phys. Rev. Lett. 99 (17), 178102.

15. V. V. Lebedev , K. S. Turitsyn & S. S. Vergeles 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99 (21), 218101.

17. B. Lorz , R. Simson , J. Nardi & E. Sackmann 2000 Weakly adhering vesicles in shear flow: Tanktreading and anomalous lift force. Europhys. Lett. 51, 468.

18. D. K. Lubensky & R. E. Goldstein 1996 Hydrodynamics of monolayer domains at the air–water interface. Phys. Fluids 8 (4), 843854.

20. C. Misbah 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.

21. S. S. Ozarkar & A. S. Sangani 2008 A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas–liquid interface. Phys. Fluids 20, 063301.

22. W. F. Pickard 1972 Further observations on cytoplasmic streaming in Chara braunii. Can. J. Bot. 50, 703711.

24. P. G. Saffman & M. Delbrück 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 31113113.

25. U. Seifert 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.

26. U. Seifert 1999 Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405415.

27. U. Seifert & S. A. Langer 1993 Viscous modes of fluid bilayer membranes. Europhys. Lett. 23, 71.

29. M. Staykova , R. Lipowsky & R. Dimova 2008 Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields. Soft Matt. 4 (11), 21682171.

30. K. Sugiyama & M. Sbragaglia 2008 Linear shear flow past a hemispherical droplet adhering to a solid surface. J. Engng Maths 62 (1), 3550.

31. T. Tran-Cong & J. R. Blake 1982 General solutions of the Stokes’ flow equations. J. Math. Anal. Appl. 90 (1), 7284.

32. J. Verchot-Lubicz & R. E. Goldstein 2010 Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240, 99107.

33. C. Vézy , G. Massiera & A. Viallat 2007 Adhesion induced non-planar and asynchronous flow of a giant vesicle membrane in an external shear flow. Soft Matt. 3 (7), 844851.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 42 *
Loading metrics...

Abstract views

Total abstract views: 156 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th May 2017. This data will be updated every 24 hours.