Skip to main content
×
×
Home

Shear-driven circulation patterns in lipid membrane vesicles

  • Francis G. Woodhouse (a1) and Raymond E. Goldstein (a1)
Abstract
Abstract

Recent experiments have shown that when a near-hemispherical lipid vesicle attached to a solid surface is subjected to a simple shear flow it exhibits a pattern of membrane circulation much like a dipole vortex. This is in marked contrast to the toroidal circulation that would occur in the related problem of a drop of immiscible fluid attached to a surface and subjected to shear. This profound difference in flow patterns arises from the lateral incompressibility of the membrane, which restricts the observable flows to those in which the velocity field in the membrane is two-dimensionally divergence free. Here we study these circulation patterns within the simplest model of membrane fluid dynamics. A systematic expansion of the flow field based on Papkovich–Neuber potentials is developed for general viscosity ratios between the membrane and the surrounding fluids. Comparison with experimental results (Vézy, Massiera & Viallat, Soft Matt., vol. 3, 2007, pp. 844–851) is made, and it is shown how such studies could allow measurements of the membrane viscosity. Issues of symmetry-breaking and pattern selection are discussed.

Copyright
Corresponding author
Email address for correspondence: R.E.Goldstein@damtp.cam.ac.uk
References
Hide All
1. Abkarian M. & Viallat A. 2008 Vesicles and red blood cells in shear flow. Soft Matt. 4 (4), 653657.
2. Barthes-Biesel D. & Sgaier H. 1985 Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow. J. Fluid Mech. 160, 119135.
3. Blake J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Camb. Phil. Soc. 70, 303.
4. Brochard-Wyart F. & de Gennes P. G. 2002 Adhesion induced by mobile binders: dynamics. Proc. Natl Acad. Sci. USA 99, 78547859.
5. Camley B. A., Esposito C., Baumgart T. & Brown F. L. 2010 Lipid bilayer domain fluctuations as a probe of membrane viscosity. Biophys. J. 99, L44L46.
6. Deschamps J., Kantsler V. & Steinberg V. 2009 Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102 (11), 118105.
7. Dimova R., Dietrich C., Hadjiisky A., Danov K. & Pouligny B. 1999 Falling ball viscosimetry of giant vesicle membranes: finite-size effects. Eur. Phys. J. B 12 (4), 589598.
8. Dussan V. E. B. 1987 On the ability of drops to stick to surfaces of solids. Part 3. The influences of the motion of the surrounding fluid on dislodging drops. J. Fluid Mech. 174, 381397.
9. Feng S., Skalak R. & Chien S. 1989 Velocity distribution on the membrane of a tank-treading red blood cell. Bull. Math. Biol. 51 (4), 449465.
10. Happel J. & Brenner H. 1991 Low Reynolds number hydrodynamics: with special applications to particulate media. Kluwer Print on Demand.
11. Henle M. L. & Levine A. J. 2010 Hydrodynamics in curved membranes: The effect of geometry on particulate mobility. Phys. Rev. E 81 (1), 011905.
12. Henle M. L., McGorty R., Schofield A. B., Dinsmore A. D. & Levine A. J. 2008 The effect of curvature and topology on membrane hydrodynamics. Europhys. Lett. 84, 48001.
13. Kantsler V., Segre E. & Steinberg V. 2007 Vesicle dynamics in time-dependent elongation flow: Wrinkling instability. Phys. Rev. Lett. 99 (17), 178102.
14. Keller S. R. & Skalak R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.
15. Lebedev V. V., Turitsyn K. S. & Vergeles S. S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99 (21), 218101.
16. Li X. & Pozrikidis C. 1996 Shear flow over a liquid drop adhering to a solid surface. J. Fluid Mech. 307, 167190.
17. Lorz B., Simson R., Nardi J. & Sackmann E. 2000 Weakly adhering vesicles in shear flow: Tanktreading and anomalous lift force. Europhys. Lett. 51, 468.
18. Lubensky D. K. & Goldstein R. E. 1996 Hydrodynamics of monolayer domains at the air–water interface. Phys. Fluids 8 (4), 843854.
19. van de Meent J. -W., Sederman A. J., Gladden L. F. & Goldstein R. E. 2010 Measurement of cytoplasmic streaming in single plant cells by magnetic resonance velocimetry. J. Fluid Mech. 642, 514.
20. Misbah C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 028104.
21. Ozarkar S. S. & Sangani A. S. 2008 A method for determining Stokes flow around particles near a wall or in a thin film bounded by a wall and a gas–liquid interface. Phys. Fluids 20, 063301.
22. Pickard W. F. 1972 Further observations on cytoplasmic streaming in Chara braunii . Can. J. Bot. 50, 703711.
23. Saffman P. G. 1976 Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73 (4), 593602.
24. Saffman P. G. & Delbrück M. 1975 Brownian motion in biological membranes. Proc. Natl Acad. Sci. USA 72, 31113113.
25. Seifert U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.
26. Seifert U. 1999 Fluid membranes in hydrodynamic flow fields: Formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8, 405415.
27. Seifert U. & Langer S. A. 1993 Viscous modes of fluid bilayer membranes. Europhys. Lett. 23, 71.
28. Shankar P. N. 2005 Moffatt eddies in the cone. J. Fluid Mech. 539, 113135.
29. Staykova M., Lipowsky R. & Dimova R. 2008 Membrane flow patterns in multicomponent giant vesicles induced by alternating electric fields. Soft Matt. 4 (11), 21682171.
30. Sugiyama K. & Sbragaglia M. 2008 Linear shear flow past a hemispherical droplet adhering to a solid surface. J. Engng Maths 62 (1), 3550.
31. Tran-Cong T. & Blake J. R. 1982 General solutions of the Stokes’ flow equations. J. Math. Anal. Appl. 90 (1), 7284.
32. Verchot-Lubicz J. & Goldstein R. E. 2010 Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240, 99107.
33. Vézy C., Massiera G. & Viallat A. 2007 Adhesion induced non-planar and asynchronous flow of a giant vesicle membrane in an external shear flow. Soft Matt. 3 (7), 844851.
34. Zhao H. & Shaqfeh E. S. G. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 57 *
Loading metrics...

Abstract views

Total abstract views: 251 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th January 2018. This data will be updated every 24 hours.