Skip to main content
    • Aa
    • Aa

Shock wave instability and the carbuncle phenomenon: same intrinsic origin?

  • J.-Ch. ROBINET (a1), J. GRESSIER (a1), G. CASALIS (a1) and J.-M. MOSCHETTA (a2)

The theoretical linear stability of a shock wave moving in an unlimited homogeneous environment has been widely studied during the last fifty years. Important results have been obtained by Dýakov (1954), Landau & Lifchitz (1959) and then by Swan & Fowles (1975) where the fluctuating quantities are written as normal modes. More recently, numerical studies on upwind finite difference schemes have shown some instabilities in the case of the motion of an inviscid perfect gas in a rectangular channel. The purpose of this paper is first to specify a mathematical formulation for the eigenmodes and to exhibit a new mode which was not found by the previous stability analysis of shock waves. Then, this mode is confirmed by numerical simulations which may lead to a new understanding of the so-called carbuncle phenomenon.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 37 *
Loading metrics...

Abstract views

Total abstract views: 118 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.